92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Well-known surface and extracellular antigens of pathogenic microorganisms among the immunodominant proteins of the infectious microalgae Prototheca zopfii

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microalgae of the genus Prototheca ( P.) are associated with rare but severe infections (protothecosis) and represent a potential zoonotic risk. Genotype (GT) 2 of P. zopfii has been established as pathogenic agent for humans, dogs, and cattle, whereas GT1 is considered to be non-pathogenic. Since pathogenesis is poorly understood, the aim of this study was to determine immunogenic proteins and potential virulence factors of P. zopfii GT2. Therefore, 2D western blot analyses with sera and isolates of two dogs naturally infected with P. zopfii GT2 have been performed. Cross-reactivity was determined by including the type strains of P. zopfii GT2, P. zopfii GT1, and P. blaschkeae, a close relative of P. zopfii, which is known to cause subclinical forms of bovine mastitis. The sera showed a high strain-, genotype-, and species-cross-reactivity. A total of 198 immunogenic proteins have been analyzed via MALDI—TOF MS. The majority of the 86 identified proteins are intracellularly located (e.g., malate dehydrogenase, oxidoreductase, 3-dehydroquinate synthase) but some antigens and potential virulence factors, known from other pathogens, have been found (e.g., phosphomannomutase, triosephosphate isomerase). One genotype-specific antigen could be identified as heat shock protein 70 (Hsp70), a well-known antigen of eukaryotic pathogens with immunological importance when located extracellularly. Both sera were reactive to glyceraldehyde-3-phosphate-dehydrogenase of all investigated strains. This house-keeping enzyme is found to be located on the surface of several pathogens as virulence factor. Flow-cytometric analysis revealed its presence on the surface of P. blaschkeae.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine.

          Here, we demonstrate a previously unknown function for the 70-kDa heat-shock protein (HSP70) as a cytokine. HSP70 bound with high affinity to the plasma membrane, elicited a rapid intracellular calcium flux, activated nuclear factor (NF)-kappaB and upregulated the expression of pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 in human monocytes. Furthermore, two different signal transduction pathways were activated by exogenous HSP70: one dependent on CD14 and intracellular calcium, which resulted in increased IL-1beta, IL-6 and TNF-alpha; and the other independent of CD14 but dependent on intracellular calcium, which resulted in an increase in TNF-alpha but not IL-1beta or IL-6. These findings indicate that CD14 is a co-receptor for HSP70-mediated signaling in human monocytes and are indicative of an previously unrecognized function for HSP70 as an extracellular protein with regulatory effects on human monocytes, having a dual role as chaperone and cytokine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Housekeeping enzymes as virulence factors for pathogens.

            Housekeeping enzymes are ubiquitously present in almost all living beings to perform essential metabolic functions for the purpose of survival. These enzymes have been characterized in detail for many years. In recent years, there has been a number of reports indicating that some of these enzymes perform a variety of other functions. In case of many pathogens, certain enzymes play a role to enhance virulence. To perform such a function, enzymes must be located on the surface of pathogens. Although they do not have the typical signal sequence or membrane anchoring mechanisms, they do get secreted and are displayed on the surface, probably by their reassociation. Once on the surface, these enzymes interact with host components, such as fibronectin and plasminogen, or interact directly with the host cells, to trigger signal transduction and thereby enable the pathogens to colonize, persist and invade the host tissue. Therefore, certain housekeeping enzymes may act as putative virulence factors and targets for the development of new strategies to control the infection by using agents that can block their secretion and/or reassociation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human protothecosis.

              Human protothecosis is a rare infection caused by members of the genus Prototheca. Prototheca species are generally considered to be achlorophyllic algae and are ubiquitous in nature. The occurrence of protothecosis can be local or disseminated and acute or chronic, with the latter being more common. Diseases have been classified as (i) cutaneous lesions, (ii) olecranon bursitis, or (iii) disseminated or systemic manifestations. Infections can occur in both immunocompetent and immunosuppressed patients, although more severe and disseminated infections tend to occur in immunocompromised individuals. Prototheca wickerhamii and Prototheca zopfii have been associated with human disease. Usually, treatment involves medical and surgical approaches; treatment failure is not uncommon. Antifungals such as ketoconazole, itraconazole, fluconazole, and amphotericin B are the most commonly used drugs to date. Among them, amphotericin B displays the best activity against Prototheca spp. Diagnosis is largely made upon detection of characteristic structures observed on histopathologic examination of tissue.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                29 September 2015
                2015
                : 5
                : 67
                Affiliations
                [1] 1Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
                [2] 2Institute for Chemistry and Biochemistry, Freie Universität Berlin Berlin, Germany
                [3] 3Institute of Virology, Centre for Infection Medicine, Freie Universität Berlin Berlin, Germany
                Author notes

                Edited by: Jiri Stulik, University of Defence, Czech Republic

                Reviewed by: Deborah Threadgill, Texas A&M University, USA; Stephen Peter Kidd, University of Adelaide, Australia

                *Correspondence: Jayaseelan Murugaiyan, Institute of Animal Hygiene and Environmental Health, Centre for Infection Medicine, Freie Universität Berlin, Robert-von-Ostertag Straße 7–13, 14163 Berlin, Germany jayaseelan.murugaiyan@ 123456fu-berlin.de
                Article
                10.3389/fcimb.2015.00067
                4586511
                934104c6-4928-4896-b11d-fbfbafcf14de
                Copyright © 2015 Irrgang, Murugaiyan, Weise, Azab and Roesler.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 April 2015
                : 11 September 2015
                Page count
                Figures: 4, Tables: 3, Equations: 0, References: 53, Pages: 10, Words: 7576
                Categories
                Microbiology
                Original Research

                Infectious disease & Microbiology
                prototheca,canine protothecosis,immunodominant proteins,western blotting,proteomics,maldi tof ms

                Comments

                Comment on this article