7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abscisic acid is involved in the regulation of cold stress response, but its molecular mechanism remains to be elucidated. In this study, we demonstrated that the APETALA2/ethylene responsive factor (AP2/ERF) family protein MdABI4 positively regulates abscisic acid-mediated cold tolerance in apple. We found that MdABI4 interacts with MdICE1, a key regulatory protein involved in the cold stress response, and enhances the transcriptional regulatory function of MdICE1 on its downstream target gene MdCBF1, thus improving abscisic acid-mediated cold tolerance. The jasmonate-ZIM domain (JAZ) proteins MdJAZ1 and MdJAZ2 negatively modulate MdABI4-improved cold tolerance in apple by interacting with the MdABI4 protein. Further investigation showed that MdJAZ1 and MdJAZ2 interfere with the interaction between the MdABI4 and MdICE1 proteins. Together, our data revealed that MdABI4 integrates jasmonic acid and abscisic acid signals to precisely modulate cold tolerance in apple through the JAZ-ABI4-ICE1-CBF regulatory cascade. These findings provide insights into the crosstalk between jasmonic acid and abscisic acid signals in response to cold stress.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana

          The Agrobacterium vacuum infiltration method has made it possible to transform Arabidopsis thaliana without plant tissue culture or regeneration. In the present study, this method was evaluated and a substantially modified transformation method was developed. The labor-intensive vacuum infiltration process was eliminated in favor of simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77. Sucrose and surfactant were critical to the success of the floral dip method. Plants inoculated when numerous immature floral buds and few siliques were present produced transformed progeny at the highest rate. Plant tissue culture media, the hormone benzylamino purine and pH adjustment were unnecessary, and Agrobacterium could be applied to plants at a range of cell densities. Repeated application of Agrobacterium improved transformation rates and overall yield of transformants approximately twofold. Covering plants for 1 day to retain humidity after inoculation also raised transformation rates twofold. Multiple ecotypes were transformable by this method. The modified method should facilitate high-throughput transformation of Arabidopsis for efforts such as T-DNA gene tagging, positional cloning, or attempts at targeted gene replacement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abiotic Stress Signaling and Responses in Plants.

            As sessile organisms, plants must cope with abiotic stress such as soil salinity, drought, and extreme temperatures. Core stress-signaling pathways involve protein kinases related to the yeast SNF1 and mammalian AMPK, suggesting that stress signaling in plants evolved from energy sensing. Stress signaling regulates proteins critical for ion and water transport and for metabolic and gene-expression reprogramming to bring about ionic and water homeostasis and cellular stability under stress conditions. Understanding stress signaling and responses will increase our ability to improve stress resistance in crops to achieve agricultural sustainability and food security for a growing world population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling.

              Jasmonate and related signalling compounds have a crucial role in both host immunity and development in plants, but the molecular details of the signalling mechanism are poorly understood. Here we identify members of the jasmonate ZIM-domain (JAZ) protein family as key regulators of jasmonate signalling. JAZ1 protein acts to repress transcription of jasmonate-responsive genes. Jasmonate treatment causes JAZ1 degradation and this degradation is dependent on activities of the SCF(COI1) ubiquitin ligase and the 26S proteasome. Furthermore, the jasmonoyl-isoleucine (JA-Ile) conjugate, but not other jasmonate-derivatives such as jasmonate, 12-oxo-phytodienoic acid, or methyl-jasmonate, promotes physical interaction between COI1 and JAZ1 proteins in the absence of other plant proteins. Our results suggest a model in which jasmonate ligands promote the binding of the SCF(COI1) ubiquitin ligase to and subsequent degradation of the JAZ1 repressor protein, and implicate the SCF(COI1)-JAZ1 protein complex as a site of perception of the plant hormone JA-Ile.
                Bookmark

                Author and article information

                Journal
                Journal of Experimental Botany
                Oxford University Press (OUP)
                0022-0957
                1460-2431
                January 27 2022
                January 27 2022
                September 23 2021
                January 27 2022
                January 27 2022
                September 23 2021
                : 73
                : 3
                : 980-997
                Affiliations
                [1 ]State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
                [2 ]Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, College of Biological and Agricultural Engineering, Weifang University, Weifang, Shandong, China
                [3 ]Beijing Academy of Forestry and Pomology Sciences, Beijing, China
                [4 ]Shandong Academy of Grape, Jinan, Shandong, China
                [5 ]Bielefeld University, Germany
                Article
                10.1093/jxb/erab433
                34555166
                93344fa6-9b98-45d3-b693-e1e1a55f2f70
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article