1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Vitamin K in Intestinal Health

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intestinal diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancer (CRC) generally characterized by clinical symptoms, including malabsorption, intestinal dysfunction, injury, and microbiome imbalance, as well as certain secondary intestinal disease complications, continue to be serious public health problems worldwide. The role of vitamin K (VK) on intestinal health has drawn growing interest in recent years. In addition to its role in blood coagulation and bone health, several investigations continue to explore the role of VK as an emerging novel biological compound with the potential function of improving intestinal health. This study aims to present a thorough review on the bacterial sources, intestinal absorption, uptake of VK, and VK deficiency in patients with intestinal diseases, with emphasis on the effect of VK supplementation on immunity, anti-inflammation, intestinal microbes and its metabolites, antioxidation, and coagulation, and promoting epithelial development. Besides, VK-dependent proteins (VKDPs) are another crucial mechanism for VK to exert a gastroprotection role for their functions of anti-inflammation, immunomodulation, and anti-tumorigenesis. In summary, published studies preliminarily show that VK presents a beneficial effect on intestinal health and may be used as a therapeutic drug to prevent/treat intestinal diseases, but the specific mechanism of VK in intestinal health has yet to be elucidated.

          Related collections

          Most cited references222

          • Record: found
          • Abstract: found
          • Article: not found

          From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

          A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation

            Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T (Treg) cells expressing transcription factor Foxp3 play a key role in limiting inflammatory responses in the intestine 1 . Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory Th17 cells 2-6 , the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we hypothesized that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We found that a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg cell numbers upon provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells as the observed phenomenon was dependent upon intronic enhancer CNS1, essential for extrathymic, but dispensable for thymic Treg cell differentiation 1, 7 . In addition to butyrate, de novo Treg cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of HDAC inhibition, but not acetate, lacking this activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.

              The two primary human inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), are idiopathic relapsing disorders characterized by chronic inflammation of the intestinal tract. Although several lines of reasoning suggest that gastrointestinal (GI) microbes influence inflammatory bowel disease (IBD) pathogenesis, the types of microbes involved have not been adequately described. Here we report the results of a culture-independent rRNA sequence analysis of GI tissue samples obtained from CD and UC patients, as well as non-IBD controls. Specimens were obtained through surgery from a variety of intestinal sites and included both pathologically normal and abnormal states. Our results provide comprehensive molecular-based analysis of the microbiota of the human small intestine. Comparison of clone libraries reveals statistically significant differences between the microbiotas of CD and UC patients and those of non-IBD controls. Significantly, our results indicate that a subset of CD and UC samples contained abnormal GI microbiotas, characterized by depletion of commensal bacteria, notably members of the phyla Firmicutes and Bacteroidetes. Patient stratification by GI microbiota provides further evidence that CD represents a spectrum of disease states and suggests that treatment of some forms of IBD may be facilitated by redress of the detected microbiological imbalances.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                05 January 2022
                2021
                : 12
                : 791565
                Affiliations
                [1] 1 State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University , Beijing, China
                [2] 2 Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo, Japan
                [3] 3 Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology , Luoyang, China
                Author notes

                Edited by: Xia Xiong, Chinese Academy of Sciences, China

                Reviewed by: Dan Wan, Chinese Academy of Sciences, China; Huansheng Yang, Hunan Normal University, China

                *Correspondence: Bingkun Zhang, bingkunzhang@ 123456126.com

                This article was submitted to Nutritional Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.791565
                8769504
                35069573
                93193f95-4193-48bf-84bd-0b1eb642e9ee
                Copyright © 2022 Lai, Masatoshi, Ma, Guo and Zhang

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 October 2021
                : 02 December 2021
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 223, Pages: 19, Words: 7953
                Funding
                Funded by: Foundation for Innovative Research Groups of the National Natural Science Foundation of China , doi 10.13039/501100012659;
                Categories
                Immunology
                Review

                Immunology
                vk,intestinal health,vkdps,ibds,intestinal disease
                Immunology
                vk, intestinal health, vkdps, ibds, intestinal disease

                Comments

                Comment on this article