110
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      FHL1 interacts with oestrogen receptors and regulates breast cancer cell growth

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Four and a half LIM protein 1 (FHL1) belongs to the Lin-1, Isl-1 and Mec-3 (LIM)-only protein family and plays important roles in muscle growth and carcinogenesis. However, the biological function of FHL1 remains largely unknown. Here, we show that FHL1 physically and functionally interacted with oestrogen receptors (ERs), which are involved in breast cancer development and progression. FHL1 bound specifically to the activation function-1 domain of ER. Physical interaction of FHL1 and ER is required for FHL1 repression of oestrogen-responsive gene transcription. FHL1 affected recruitment of ER to an oestrogen-responsive promoter and ER binding to an oestrogen-responsive element. Overexpression of FHL1 in breast cancer cells decreased expression of oestrogen-responsive proteins, whereas knockdown of endogenous FHL1 with FHL1 small interfering RNA increased the expression of these proteins. Further analysis of 46 breast cancer samples showed that FHL1 expression negatively associated with oestrogen-responsive gene expression in breast cancer cells. FHL1 inhibited anchorage-dependent and -independent breast cancer cell growth. These results suggest that FHL1 may play an important role in ER signalling as well as breast cancer cell growth regulation.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta.

          The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 > zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 > genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta.

            The rat estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand binding domain and in the N-terminal transactivation domain. In this study we investigated the messenger RNA expression of both ER subtypes in rat tissues by RT-PCR and compared the ligand binding specificity of the ER subtypes. Saturation ligand binding analysis of in vitro synthesized human ER alpha and rat ER beta protein revealed a single binding component for 16 alpha-iodo-17 beta-estradiol with high affinity [dissociation constant (Kd) = 0.1 nM for ER alpha protein and 0.4 nM for ER beta protein]. Most estrogenic substances or estrogenic antagonists compete with 16 alpha-[125I]iodo-17 beta-estradiol for binding to both ER subtypes in a very similar preference and degree; that is, diethylstilbestrol > hexestrol > dienestrol > 4-OH-tamoxifen > 17 beta-estradiol > coumestrol, ICI-164384 > estrone, 17 alpha-estradiol > nafoxidine, moxestrol > clomifene > estriol, 4-OH-estradiol > tamoxifen, 2-OH-estradiol, 5-androstene-3 beta, 17 beta-diol, genistein for the ER alpha protein and dienestrol > 4-OH-tamoxifen > diethylstilbestrol > hexestrol > coumestrol, ICI-164384 > 17 beta-estradiol > estrone, genistein > estriol > nafoxidine, 5-androstene-3 beta, 17 beta-diol > 17 alpha-estradiol, clomifene, 2-OH-estradiol > 4-OH-estradiol, tamoxifen, moxestrol for the ER beta protein. The rat tissue distribution and/or the relative level of ER alpha and ER beta expression seems to be quite different, i.e. moderate to high expression in uterus, testis, pituitary, ovary, kidney, epididymis, and adrenal for ER alpha and prostate, ovary, lung, bladder, brain, uterus, and testis for ER beta. The described differences between the ER subtypes in relative ligand binding affinity and tissue distribution could contribute to the selective action of ER agonists and antagonists in different tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nuclear hormone receptors and gene expression.

              The nuclear hormone receptor superfamily includes receptors for thyroid and steroid hormones, retinoids and vitamin D, as well as different "orphan" receptors of unknown ligand. Ligands for some of these receptors have been recently identified, showing that products of lipid metabolism such as fatty acids, prostaglandins, or cholesterol derivatives can regulate gene expression by binding to nuclear receptors. Nuclear receptors act as ligand-inducible transcription factors by directly interacting as monomers, homodimers, or heterodimers with the retinoid X receptor with DNA response elements of target genes, as well as by "cross-talking" to other signaling pathways. The effects of nuclear receptors on transcription are mediated through recruitment of coregulators. A subset of receptors binds corepressor factors and actively represses target gene expression in the absence of ligand. Corepressors are found within multicomponent complexes that contain histone deacetylase activity. Deacetylation leads to chromatin compactation and transcriptional repression. Upon ligand binding, the receptors undergo a conformational change that allows the recruitment of multiple coactivator complexes. Some of these proteins are chromatin remodeling factors or possess histone acetylase activity, whereas others may interact directly with the basic transcriptional machinery. Recruitment of coactivator complexes to the target promoter causes chromatin decompactation and transcriptional activation. The characterization of corepressor and coactivator complexes, in concert with the identification of the specific interaction motifs in the receptors, has demonstrated the existence of a general molecular mechanism by which different receptors elicit their transcriptional responses in target genes.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                January 2011
                16 October 2009
                : 15
                : 1
                : 72-85
                Affiliations
                [a ]Department of Molecular Oncology, Beijing Institute of Biotechnology Beijing, China
                [b ]Department of General Surgery, Chinese PLA General Hospital Beijing, China
                [c ]Department of Clinical Laboratory, the First Affiliated Hospital, Chinese PLA General Hospital Beijing, China
                [d ]Department of Obstetrics and gynecology, Chinese PLA General Hospital Beijing, China
                Author notes
                Correspondence to: Qinong YE, Beijing Institute of Biotechnology, 27 Tai-Ping Lu Rd, Beijing 100850, China. Tel.: (8610)6818-0809 Fax: (8610)6824-8045 E-mail: yeqn66@ 123456yahoo.com

                These authors contributed equally to this work.

                Article
                10.1111/j.1582-4934.2009.00938.x
                3822495
                19840196
                92d69ebc-83c0-4128-9258-8b4b005c6525
                © 2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
                History
                : 23 May 2009
                : 15 September 2009
                Categories
                Articles

                Molecular medicine
                fhl1,er,interaction,transcriptional activity,breast cancer
                Molecular medicine
                fhl1, er, interaction, transcriptional activity, breast cancer

                Comments

                Comment on this article