14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Type 1 Diabetes in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy Syndrome (APECED): A “Rare” Manifestation in a “Rare” Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 1 autoimmune polyglandular syndrome (APS1) is a rare autosomal recessive disease, caused by mutations in the autoimmune regulator gene ( AIRE); the encoded Aire protein plays an important role in the establishment of the immunological tolerance acting as a transcriptional regulator of the expression of organ-specific antigens within the thymus in perinatal age. While a high prevalence for this rare syndrome is reported in Finland and Scandinavia (Norway), autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) cohorts of patients are also detected in continental Italy and Sardinia, among Iranian Jews, as well as in other countries. The syndrome is diagnosed when patients present at least two out of the three fundamental disorders including chronic mucocutaneous candidiasis, hypoparathyroidism, and Addison’s disease. Among the associated conditions insulin-dependent diabetes mellitus (Type 1 diabetes) has been rarely reported in different series of patients and occurring more frequently in Finnish APECED patients. In this review, we analyze the incidence of Type 1 diabetes as a clinical manifestation of APECED in different populations highlighting the peculiar genetic and immunological features of the disease when occurring in the context of this syndrome.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Positional cloning of the APECED gene.

          Autoimmune polyglandular syndrome type I (APS 1, also called APECED) is an autosomal-recessive disorder that maps to human chromosome 21q22.3 between markers D21S49 and D21S171 by linkage studies. We have isolated a novel gene from this region, AIRE (autoimmune regulator), which encodes a protein containing motifs suggestive of a transcription factor including two zinc-finger (PHD-finger) motifs, a proline-rich region and three LXXLL motifs. Two mutations, a C-->T substitution that changes the Arg 257 (CGA) to a stop codon (TGA) and an A-->G substitution that changes the Lys 83 (AAG) to a Glu codon (GAG), were found in this novel gene in Swiss and Finnish APECED patients. The Arg257stop (R257X) is the predominant mutation in Finnish APECED patients, accounting for 10/12 alleles studied. These results indicate that this gene is responsible for the pathogenesis of APECED. The identification of the gene defective in APECED should facilitate the genetic diagnosis and potential treatment of the disease and further enhance our general understanding of the mechanisms underlying autoimmune diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reciprocal regulation of polarized cytokine production by effector B and T cells.

            Although B cells produce cytokines it is not known whether B cells can differentiate into effector subsets that secrete polarized arrays of cytokines. We have identified two populations of "effector" B cells (Be1 and Be2) that produce distinct patterns of cytokines depending on the cytokine environment in which the cells were stimulated during their primary encounter with antigen and T cells. These effector B cell subsets subsequently regulate the differentiation of naïve CD4+ T cells to TH1 and TH2 cells through production of polarizing cytokines such as interleukin 4 and interferon gamma. In addition, Be1 and Be2 cells could be identified in animals that were infected with pathogens that preferentially induce a Type 1 and Type 2 immune response. Together these results suggest that, in addition to their well defined role in antibody production, B cells may regulate immune responses to infectious pathogens through their production of cytokines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins.

              Rheumatoid arthritis is a common and debilitating autoimmune disease whose cause and mechanism remain a mystery. We recently described a T cell receptor transgenic mouse model that spontaneously develops a disease with most of the clinical, histological, and immunological features of rheumatoid arthritis in humans. Disease development in K/BxN mice is initiated by systemic T cell self-reactivity; it requires T cells, as expected, but B cells are also needed, more surprisingly. Here, we have identified the role of B cells as the secretion of arthritogenic immunoglobulins. We suggest that a similar scenario may unfold in some other arthritis models and in human patients, beginning with pervasive T cell autoreactivity and ending in immunoglobulin-provoked joint destruction.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                12 July 2016
                July 2016
                : 17
                : 7
                : 1106
                Affiliations
                Infectivology and Clinical Trials Area, Children’s Hospital Bambino Gesù, Rome 00146, Italy; alessandra.fierabracci@ 123456opbg.net ; Tel.: +39-06-6859-2656
                Article
                ijms-17-01106
                10.3390/ijms17071106
                4964482
                27420045
                92cf94c9-f1b9-4eb3-aeae-f1b2dbb581b5
                © 2016 by the author; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 May 2016
                : 01 July 2016
                Categories
                Review

                Molecular biology
                type 1 diabetes,autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (apeced),immunologic features,genetics,etiopathogenesis

                Comments

                Comment on this article