Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anomaly Detection and Repairing for Improving Air Quality Monitoring

      , ,
      Sensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clean air in cities improves our health and overall quality of life and helps fight climate change and preserve our environment. High-resolution measures of pollutants’ concentrations can support the identification of urban areas with poor air quality and raise citizens’ awareness while encouraging more sustainable behaviors. Recent advances in Internet of Things (IoT) technology have led to extensive use of low-cost air quality sensors for hyper-local air quality monitoring. As a result, public administrations and citizens increasingly rely on information obtained from sensors to make decisions in their daily lives and mitigate pollution effects. Unfortunately, in most sensing applications, sensors are known to be error-prone. Thanks to Artificial Intelligence (AI) technologies, it is possible to devise computationally efficient methods that can automatically pinpoint anomalies in those data streams in real time. In order to enhance the reliability of air quality sensing applications, we believe that it is highly important to set up a data-cleaning process. In this work, we propose AIrSense, a novel AI-based framework for obtaining reliable pollutant concentrations from raw data collected by a network of low-cost sensors. It enacts an anomaly detection and repairing procedure on raw measurements before applying the calibration model, which converts raw measurements to concentration measurements of gasses. There are very few studies of anomaly detection in raw air quality sensor data (millivolts). Our approach is the first that proposes to detect and repair anomalies in raw data before they are calibrated by considering the temporal sequence of the measurements and the correlations between different sensor features. If at least some previous measurements are available and not anomalous, it trains a model and uses the prediction to repair the observations; otherwise, it exploits the previous observation. Firstly, a majority voting system based on three different algorithms detects anomalies in raw data. Then, anomalies are repaired to avoid missing values in the measurement time series. In the end, the calibration model provides the pollutant concentrations. Experiments conducted on a real dataset of 12,000 observations produced by 12 low-cost sensors demonstrated the importance of the data-cleaning process in improving calibration algorithms’ performances.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            New Introduction to Multiple Time Series Analysis

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              imputeTS: Time Series Missing Value Imputation in R

                Bookmark

                Author and article information

                Contributors
                Journal
                SENSC9
                Sensors
                Sensors
                MDPI AG
                1424-8220
                January 2023
                January 06 2023
                : 23
                : 2
                : 640
                Article
                10.3390/s23020640
                92bb4361-7060-4546-bb5d-e3271a203c0c
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content102

                Cited by5

                Most referenced authors787