There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
The purpose of these guidelines is to assist physicians in recommending, performing, interpreting and reporting the results of FDG PET/CT for oncological imaging of adult patients. PET is a quantitative imaging technique and therefore requires a common quality control (QC)/quality assurance (QA) procedure to maintain the accuracy and precision of quantitation. Repeatability and reproducibility are two essential requirements for any quantitative measurement and/or imaging biomarker. Repeatability relates to the uncertainty in obtaining the same result in the same patient when he or she is examined more than once on the same system. However, imaging biomarkers should also have adequate reproducibility, i.e. the ability to yield the same result in the same patient when that patient is examined on different systems and at different imaging sites. Adequate repeatability and reproducibility are essential for the clinical management of patients and the use of FDG PET/CT within multicentre trials. A common standardised imaging procedure will help promote the appropriate use of FDG PET/CT imaging and increase the value of publications and, therefore, their contribution to evidence-based medicine. Moreover, consistency in numerical values between platforms and institutes that acquire the data will potentially enhance the role of semiquantitative and quantitative image interpretation. Precision and accuracy are additionally important as FDG PET/CT is used to evaluate tumour response as well as for diagnosis, prognosis and staging. Therefore both the previous and these new guidelines specifically aim to achieve standardised uptake value harmonisation in multicentre settings.
The U.S. health care sector is highly interconnected with industrial activities that emit much of the nation’s pollution to air, water, and soils. We estimate emissions directly and indirectly attributable to the health care sector, and potential harmful effects on public health. Negative environmental and public health outcomes were estimated through economic input-output life cycle assessment (EIOLCA) modeling using National Health Expenditures (NHE) for the decade 2003–2013 and compared to national totals. In 2013, the health care sector was also responsible for significant fractions of national air pollution emissions and impacts, including acid rain (12%), greenhouse gas emissions (10%), smog formation (10%) criteria air pollutants (9%), stratospheric ozone depletion (1%), and carcinogenic and non-carcinogenic air toxics (1–2%). The largest contributors to impacts are discussed from both the supply side (EIOLCA economic sectors) and demand side (NHE categories), as are trends over the study period. Health damages from these pollutants are estimated at 470,000 DALYs lost from pollution-related disease, or 405,000 DALYs when adjusted for recent shifts in power generation sector emissions. These indirect health burdens are commensurate with the 44,000–98,000 people who die in hospitals each year in the U.S. as a result of preventable medical errors, but are currently not attributed to our health system. Concerted efforts to improve environmental performance of health care could reduce expenditures directly through waste reduction and energy savings, and indirectly through reducing pollution burden on public health, and ought to be included in efforts to improve health care quality and safety.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.