46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Rapid Spread of a Bacterial Symbiont in an Invasive Whitefly Is Driven by Fitness Benefits and Female Bias

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Maternally inherited bacterial symbionts of arthropods are common, yet symbiont invasions of host populations have rarely been observed. Here, we show that Rickettsia sp. nr. bellii swept into a population of an invasive agricultural pest, the sweet potato whitefly, Bemisia tabaci, in just 6 years. Compared with uninfected whiteflies, Rickettsia-infected whiteflies produced more offspring, had higher survival to adulthood, developed faster, and produced a higher proportion of daughters. The symbiont thus functions as both mutualist and reproductive manipulator. The observed increased performance and sex-ratio bias of infected whiteflies are sufficient to explain the spread of Rickettsia across the southwestern United States. Symbiont invasions such as this represent a sudden evolutionary shift for the host, with potentially large impacts on its ecology and invasiveness.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: not found
          • Article: not found

          Facultative bacterial symbionts in aphids confer resistance to parasitic wasps.

          Symbiotic relationships between animals and microorganisms are common in nature, yet the factors controlling the abundance and distributions of symbionts are mostly unknown. Aphids have an obligate association with the bacterium Buchnera aphidicola (the primary symbiont) that has been shown to contribute directly to aphid fitness. In addition, aphids sometimes harbor other vertically transmitted bacteria (secondary symbionts), for which few benefits of infection have been previously documented. We carried out experiments to determine the consequences of these facultative symbioses in Acyrthosiphon pisum (the pea aphid) for vulnerability of the aphid host to a hymenopteran parasitoid, Aphidius ervi, a major natural enemy in field populations. Our results show that, in a controlled genetic background, infection confers resistance to parasitoid attack by causing high mortality of developing parasitoid larvae. Compared with uninfected controls, experimentally infected aphids were as likely to be attacked by ovipositing parasitoids but less likely to support parasitoid development. This strong interaction between a symbiotic bacterium and a host natural enemy provides a mechanism for the persistence and spread of symbiotic bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stress tolerance in plants via habitat-adapted symbiosis.

            We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid spread of an inherited incompatibility factor in California Drosophila.

              In Drosophila simulans in California, an inherited cytoplasmic incompatibility factor reduces egg hatch when infected males mate with uninfected females. The infection is spreading at a rate of more than 100 km per year; populations in which the infection was rare have become almost completely infected within three years. Analyses of the spread using estimates of selection in the field suggest dispersal distances far higher than those found by direct observation of flies. Hence, occasional long-distance dispersal, possibly coupled with local extinction and recolonization, may be important to the dynamics. Incompatibility factors that can readily spread through natural populations may be useful for population manipulation and important as a post-mating isolating mechanism.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                April 07 2011
                April 08 2011
                April 07 2011
                April 08 2011
                : 332
                : 6026
                : 254-256
                Article
                10.1126/science.1199410
                21474763
                92b8f45d-7a14-4e91-b6fe-1632f2b868dc
                © 2011

                http://www.sciencemag.org/site/feature/contribinfo/prep/license.xhtml

                History

                Comments

                Comment on this article