0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and Validation of Machine Learning Models for Prediction of Fracture Risk in Patients with Elderly-Onset Rheumatoid Arthritis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Fracture is a critical unfavorable prognostic factor in patients with rheumatoid arthritis(RA) and osteoporosis. At present, models involving clinical indices that accurately predict fracture are still uncommon. We addressed this gap by developing machine learning (ML)-based predictive models to individualize the risk of fracture in elderly patients with RA and osteoporosis and to identify a high-risk group for fracture.

          Methods

          487 patients diagnosed with RA and osteoporosis at the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture were randomly divided into a training cohort (used for building the model) and a validation cohort (used for validating the model). Five ML-assisted models were developed from candidate clinical features using two-step estimation methods. The receiver operating characteristic curve (ROC), decision curve analysis (DCA), and clinical impact curve (CIC) were performed to evaluate the robustness and clinical practicability of each model.

          Results

          A total of twenty-two candidate variables were included, and the prediction model was established by an ML-based algorithm. The areas under the ROC curve (AUCs) of the random forest classifier (RFC) model, artificial neural network (ANN), support vector machine (SVM), eXtreme gradient boosting (XGBoost), decision tree (DT), probability of major osteoporotic fractures (PMOF), and probability of hip fracture (PHF) ranged from 0.695 to 0.878. Among them, RFC obtained the optimal prediction efficiency via adding serum selenium and clinical indices, that is, glucocorticoid, and erythrocyte sedimentation rate (ESR).

          Conclusion

          Based on the classic clinical parameters, the fracture risk of RA patients with osteoporosis can be accurately predicted. In particular, RFC prediction model shows good discrimination ability in identifying high-risk patients with fracture.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Rheumatoid arthritis.

          Rheumatoid arthritis is a chronic inflammatory joint disease, which can cause cartilage and bone damage as well as disability. Early diagnosis is key to optimal therapeutic success, particularly in patients with well-characterised risk factors for poor outcomes such as high disease activity, presence of autoantibodies, and early joint damage. Treatment algorithms involve measuring disease activity with composite indices, applying a treatment-to-target strategy, and use of conventional, biological, and newz non-biological disease-modifying antirheumatic drugs. After the treatment target of stringent remission (or at least low disease activity) is maintained, dose reduction should be attempted. Although the prospects for most patients are now favourable, many still do not respond to current therapies. Accordingly, new therapies are urgently required. In this Seminar, we describe current insights into genetics and aetiology, pathophysiology, epidemiology, assessment, therapeutic agents, and treatment strategies together with unmet needs of patients with rheumatoid arthritis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Machine Learning in Medicine.

            Rahul Deo (2015)
            Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              When to use the Bonferroni correction.

              The Bonferroni correction adjusts probability (p) values because of the increased risk of a type I error when making multiple statistical tests. The routine use of this test has been criticised as deleterious to sound statistical judgment, testing the wrong hypothesis, and reducing the chance of a type I error but at the expense of a type II error; yet it remains popular in ophthalmic research. The purpose of this article was to survey the use of the Bonferroni correction in research articles published in three optometric journals, viz. Ophthalmic & Physiological Optics, Optometry & Vision Science, and Clinical & Experimental Optometry, and to provide advice to authors contemplating multiple testing.
                Bookmark

                Author and article information

                Journal
                Int J Gen Med
                Int J Gen Med
                ijgm
                International Journal of General Medicine
                Dove
                1178-7074
                14 October 2022
                2022
                : 15
                : 7817-7829
                Affiliations
                [1 ]Department of Nephropathy and Rheumatology,The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture , Enshi, 445000, People’s Republic of China
                Author notes
                Correspondence: Lihua Chen, Department of Nephropathy and Rheumatology,The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture , 158 Wuyang County Street, Enshi, Hubei, People’s Republic of China, Tel +86 0718-8263471, Email clh133374920762022@163.com
                Article
                380197
                10.2147/IJGM.S380197
                9581722
                36276661
                9297f698-40bb-417d-940c-8a125a0810ec
                © 2022 Chen et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 29 June 2022
                : 30 September 2022
                Page count
                Figures: 5, Tables: 2, References: 39, Pages: 13
                Funding
                Funded by: funded by Enshi Tujia and Miao Autonomous Prefecture Bureau of Science and technology;
                This study was funded by Enshi Tujia and Miao Autonomous Prefecture Bureau of Science and technology (Study on steroid-induced osteonecrosis of the femoral head treated by selenium.NO. E20200021).
                Categories
                Original Research

                Medicine
                rheumatoid arthritis,osteoporosis,fracture,machine learning algorithm,risk factor,predictive model

                Comments

                Comment on this article