9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Different Yeasts on Physicochemical and Oenological Properties of Red Dragon Fruit Wine Fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new type of fruit wine made from red dragon fruit juice was produced through alcoholic fermentation (AF) with different yeasts: Saccharomyces cerevisiae EC-1118, Torulaspora delbrueckii Biodiva and Lachancea thermotolerans Concerto. Complete AF with similar fermentation rates in terms of sugar utilisation and ethanol production (8–9%, v/ v) was achieved by three yeast strains. T. delbrueckii produced a significantly lower amount of glycerol and acetic acid, while L. thermotolerans produced more lactic and succinic acids. In addition, the two non- Saccharomyces strains were more efficient in proline utilisation. For volatile compounds, S. cerevisiae produced the highest amounts of esters, while T. delbrueckii produced more higher alcohols, isoamyl acetate and terpenes. On the other hand, AF caused significant degradation of betacyanin pigments and total phenolic compounds. Nevertheless, better retention of antioxidant activity and colour stability was found in L. thermotolerans and T. delbrueckii fermented wines than that of S. cerevisiae. This study suggested that it is feasible to use pure non- Saccharomyces yeast to produce red dragon fruit wine for commercialization.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

          Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.

            Non-Saccharomyces yeasts are metabolically active during spontaneous and inoculated must fermentations, and by producing a plethora of by-products, they can contribute to the definition of the wine aroma. Thus, use of Saccharomyces and non-Saccharomyces yeasts as mixed starter cultures for inoculation of wine fermentations is of increasing interest for quality enhancement and improved complexity of wines. We initially characterized 34 non-Saccharomyces yeasts of the genera Candida, Lachancea (Kluyveromyces), Metschnikowia and Torulaspora, and evaluated their enological potential. This confirmed that non-Saccharomyces yeasts from wine-related environments represent a rich sink of unexplored biodiversity for the winemaking industry. From these, we selected four non-Saccharomyces yeasts to combine with starter cultures of Saccharomyces cerevisiae in mixed fermentation trials. The kinetics of growth and fermentation, and the analytical profiles of the wines produced indicate that these non-Saccharomyces strains can be used with S. cerevisiae starter cultures to increase polysaccharide, glycerol and volatile compound production, to reduce volatile acidity, and to increase or reduce the total acidity of the final wines, depending on yeast species and inoculum ratio used. The overall effects of the non-Saccharomyces yeasts on fermentation and wine quality were strictly dependent on the Saccharomyces/non-Saccharomyces inoculum ratio that mimicked the differences of fermentation conditions (natural or simultaneous inoculated fermentation). Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Implications of nitrogen nutrition for grapes, fermentation and wine

                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                25 February 2020
                March 2020
                : 8
                : 3
                : 315
                Affiliations
                [1 ]Department of Food Science and Technology, National University of Singapore, Science Drive 2, Singapore 117543, Singapore; jiangxh@ 123456nus.edu.sg
                [2 ]National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, Jiangsu, China
                Author notes
                [* ]Correspondence: fstluy@ 123456nus.edu.sg (Y.L.); fstlsq@ 123456nus.edu.sg (S.Q.L.); Tel.: +65-65162687 (Y.L.); Fax: +65-67757895 (S.Q.L.)
                Author information
                https://orcid.org/0000-0003-0868-2731
                Article
                microorganisms-08-00315
                10.3390/microorganisms8030315
                7142936
                32106517
                929234ac-8be5-43e4-b4e7-bb47e4ddc762
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 February 2020
                : 23 February 2020
                Categories
                Article

                red dragon fruit,alcoholic fermentation,saccharomyces cerevisiae,torulaspora delbrueckii,lachancea thermotolerans

                Comments

                Comment on this article