14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease

      , , , ,
      Ageing Research Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroinflammation in Alzheimer's disease.

          Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. Misfolded and aggregated proteins bind to pattern recognition receptors on microglia and astroglia, and trigger an innate immune response characterised by release of inflammatory mediators, which contribute to disease progression and severity. Genome-wide analysis suggests that several genes that increase the risk for sporadic Alzheimer's disease encode factors that regulate glial clearance of misfolded proteins and the inflammatory reaction. External factors, including systemic inflammation and obesity, are likely to interfere with immunological processes of the brain and further promote disease progression. Modulation of risk factors and targeting of these immune mechanisms could lead to future therapeutic or preventive strategies for Alzheimer's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ROS function in redox signaling and oxidative stress.

            Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) that cause damage to lipids, proteins and DNA. Oxidative stress has been linked to a myriad of pathologies. However, elevated ROS also act as signaling molecules in the maintenance of physiological functions--a process termed redox biology. In this review we discuss the two faces of ROS--redox biology and oxidative stress--and their contribution to both physiological and pathological conditions. Redox biology involves a small increase in ROS levels that activates signaling pathways to initiate biological processes, while oxidative stress denotes high levels of ROS that result in damage to DNA, protein or lipids. Thus, the response to ROS displays hormesis, given that the opposite effect is observed at low levels compared with that seen at high levels. Here, we argue that redox biology, rather than oxidative stress, underlies physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alzheimer's disease.

              Alzheimer's disease, the commonest cause of dementia, is a growing global health concern with huge implications for individuals and society. In this review, current understanding of the epidemiology, genetics, pathology and pathogenesis of Alzheimer's disease is outlined, before its clinical presentation and current treatment strategies are discussed. Finally, the review discusses how our enhanced understanding of Alzheimer pathogenesis, including the recognition of a protracted preclinical phase, is informing new therapeutic strategies with the aim of moving from treatment to prevention.
                Bookmark

                Author and article information

                Journal
                Ageing Research Reviews
                Ageing Research Reviews
                Elsevier BV
                15681637
                May 2022
                May 2022
                : 77
                : 101619
                Article
                10.1016/j.arr.2022.101619
                35395415
                928b5385-502e-48df-8840-83496c14f0c9
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article