8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High levels of autophagy exist in Leydig cells of the testis, but its physiological function is unknown. Gao et al. now show that autophagy promotes uptake of cholesterol, an essential precursor for testosterone synthesis, by removing the NHERF2 negative regulator of the high-density lipoprotein receptor SR-BI.

          Abstract

          Testosterone is indispensable for sexual development and maintaining male characteristics, and deficiency of this hormone results in primary or late-onset hypogonadism (LOH). Testosterone is primarily produced in Leydig cells, where autophagy has been reported to be extremely active. However, the functional role of autophagy in testosterone synthesis remains unknown. In this study, we show that steroidogenic cell–specific disruption of autophagy influenced the sexual behavior of aging male mice because of a reduction in serum testosterone, which is similar to the symptoms of LOH. The decline in testosterone was caused mainly by a defect in cholesterol uptake in autophagy-deficient Leydig cells. Further studies revealed that once autophagic flux was disrupted, Na +/H + exchanger regulatory factor 2 (NHERF2) accumulated in Leydig cells, resulting in the down-regulation of scavenger receptor class B, type I (SR-BI) and eventually leading to insufficient cholesterol supply. Collectively, these results reveal that autophagy promotes cholesterol uptake into Leydig cells by eliminating NHERF2, suggesting that dysfunction of autophagy might be causal in the loss of testosterone production in some patients.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Lipid droplets: a unified view of a dynamic organelle.

          Lipid droplets form the main lipid store in eukaryotic cells. Although all cells seem to be able to generate lipid droplets, their biogenesis, regulatory mechanisms and interactions with other organelles remain largely elusive. In this article, we outline some of the recent developments in lipid droplet cell biology. We show the mobile and dynamic nature of this organelle, and advocate the adoption of a unified nomenclature to consolidate terminology in this emerging field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atg7 is required for acrosome biogenesis during spermatogenesis in mice.

            The acrosome is a specialized organelle that covers the anterior part of the sperm nucleus and plays an essential role in the process of fertilization. The molecular mechanism underlying the biogenesis of this lysosome-related organelle (LRO) is still largely unknown. Here, we show that germ cell-specific Atg7-knockout mice were infertile due to a defect in acrosome biogenesis and displayed a phenotype similar to human globozoospermia; this reproductive defect was successfully rescued by intracytoplasmic sperm injections. Furthermore, the depletion of Atg7 in germ cells did not affect the early stages of development of germ cells, but at later stages of spermatogenesis, the proacrosomal vesicles failed to fuse into a single acrosomal vesicle during the Golgi phase, which finally resulted in irregular or nearly round-headed spermatozoa. Autophagic flux was disrupted in Atg7-depleted germ cells, finally leading to the failure of LC3 conjugation to Golgi apparatus-derived vesicles. In addition, Atg7 partially regulated another globozoospermia-related protein, Golgi-associated PDZ- and coiled-coil motif-containing protein (GOPC), during acrosome biogenesis. Finally, the injection of either autophagy or lysosome inhibitors into testis resulted in a similar phenotype to that of germ cell-specific Atg7-knockout mice. Altogether, our results uncover a new role for Atg7 in the biogenesis of the acrosome, and we provide evidence to support the autolysosome origination hypothesis for the acrosome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of testosterone on sexual function in men: results of a meta-analysis.

              The role of androgen decline in the sexual activity of adult males is controversial. To clarify whether sexual function would benefit from testosterone (T) treatment in men with partially or severely reduced serum T levels, we conducted a systematic review and meta-analysis of placebo-controlled studies published in the past 30 years. The aim of this study was to assess and compare the effects of T on the different domains of sexual life. A comprehensive search of all published randomized clinical trials was performed in MEDLINE, the Cochrane Library, EMBASE and Current Contents databases. Guided by prespecified criteria, software-assisted data abstraction and quality assessed by two independent reviewers, a total of 17 randomized placebo-controlled trials were found to be eligible. For each domain of sexual function we calculated the standardized mean difference relative to T and reported the results of pooled estimates of T treatment using the random effect model of meta-analysis. Heterogeneity, reproducibility and consistency of the findings across studies were explored using sensitivity and meta-regression analysis. Overall, 656 subjects were evaluated: 284 were randomized to T, 284 to placebo (P) and 88 treated in cross-over. The median study length was 3 months (range 1-36 months). Our meta-analysis showed that in men with an average T level at baseline below 12 nmol/l, T treatment moderately improved the number of nocturnal erections, sexual thoughts and motivation, number of successful intercourses, scores of erectile function and overall sexual satisfaction, whereas T had no effect on erectile function in eugonadal men compared to placebo. Heterogeneity was explored by grouping studies according to the characteristics of the study population. A cut-off value of 10 nmol/l for the mean T of the study population failed to predict the effect of treatment, whereas the presence of risk factors for vasculogenic erectile dysfunction (ED), comorbidities and shorter evaluation periods were associated with greater treatment effects in the studies performed in hypogonadal, but not in eugonadal, men. Meta-regression analysis showed that the effects of T on erectile function, but not libido, were inversely related to the mean baseline T concentration. The meta-analysis of available studies indicates that T treatment might be useful for improving vasculogenic ED in selected subjects with low or low-normal T levels. The evidence for a beneficial effect of T treatment on erectile function should be tempered with the caveats that the effect tends to decline over time, is progressively smaller with increasing baseline T levels, and long-term safety data are not available. The present meta-analysis highlights the need, and pitfalls, for large-scale, long-term, randomized controlled trials to formally investigate the efficacy of T replacement in symptomatic middle-aged and elderly men with reduced T levels and ED.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                Rockefeller University Press
                0021-9525
                1540-8140
                04 June 2018
                : 217
                : 6
                : 2103-2119
                Affiliations
                [1 ]State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
                [2 ]The Ministry of Health Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
                [3 ]Reproductive and Genetic Medical Center, Department of Urology, Peking University First Hospital, Beijing, China
                [4 ]College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
                [5 ]School of Biotechnology and Food, Shangqiu Normal University, Shangqiu, China
                Author notes
                Correspondence to Wei Li: leways@ 123456ioz.ac.cn
                [*]

                F. Gao, G. Li, C. Liu, and H. Gao contributed equally to this paper.

                Author information
                http://orcid.org/0000-0002-7893-0721
                http://orcid.org/0000-0002-6235-0749
                Article
                201710078
                10.1083/jcb.201710078
                5987723
                29618492
                92890160-f3e7-4a19-929b-60cc711dbc5d
                © 2018 Gao et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

                History
                : 12 October 2017
                : 01 February 2018
                : 05 March 2018
                Funding
                Funded by: National Natural Science Foundation of China, DOI https://doi.org/10.13039/501100001809;
                Award ID: 91649202
                Funded by: National Key R&D Program of China
                Award ID: 2016YFA0500901
                Funded by: Chinese Academy of Sciences, DOI 10.13039/501100002367;
                Award ID: XDA16020701
                Categories
                Research Articles
                Article
                1
                22

                Cell biology
                Cell biology

                Comments

                Comment on this article