28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Downregulated Expression of Peroxiredoxin 4 in Granulosa Cells from Polycystic Ovary Syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peroxiredoxin 4 (PRDX4), a member of Peroxiredoxin (PRDX) family, is a typical 2-Cys PRDX. PRDX4 monitors the oxidative burden within cellular compartment and reduces hydrogen peroxide and alkyl hydroperoxide related to oxidative stress and apoptosis. Antioxidant, like PRDX4, may promote follicle development and participate in the pathophysiology of PCOS. In our previous study, we found that PRDX4 was expressed in mice oocyte cumulus oophorus complex, and that PRDX4 could be associated with follicle development. In this study, we explored the expression of PRDX4 in human follicles and possible role of PRDX4 in PCOS pathophysiology. Our data showed that PRDX4 was mainly expressed in granulosa cells in human ovaries. When compared to control group, both PRDX4 mRNA level and protein level decreased in PCOS group. The lowered levels of PRDX4 may relate to oxidative stress in the pathophysiologic progress of PCOS. Furthermore, expression of PRDX4 in the granulosa cells of in vivo or in vitro matured follicles was higher than that in immatured follicles, which suggested that PRDX4 may have a close relationship with follicular development. Altogether, our findings may provide new clues of the pathophysiologic mechanism of PCOS and potential therapeutic strategy using antioxidant, like PRDX4.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Follicle dynamics and anovulation in polycystic ovary syndrome.

          Polycystic ovary syndrome (PCOS) is the commonest cause of anovulatory infertility and menstrual cycle abnormalities, but the factors responsible for failure to select a dominant follicle remain unclear. Source is authors' own studies and search of the relevant literature. Arrest of antral follicle growth is associated with an abnormal endocrine environment involving hypersecretion of luteinizing hormone and insulin (and perhaps hyperandrogenism). The net effect is secondary suppression of FSH, which leads to inhibition of maturation of otherwise healthy follicles in the cohort. There is, however, emerging evidence for an intrinsic abnormality of folliculogenesis in PCOS that affects the very earliest, gonadotrophin independent, stages of follicle development. There is an increased density of small pre-antral follicles and an increased proportion of early growing follicles. These abnormalities in anovulatory PCOS are further defined by abnormal granulosa cell proliferation and disparate growth of oocyte and surrounding granulosa cells. This suggests that the normal 'dialogue' between oocyte and granulosa cells in these early growing follicles is altered. There is evidence that abnormal, local (follicle-to-follicle) signalling of anti-Müllerian hormone may play a part in disordered folliculogenesis, but it is plausible that other local regulators that have been implicated in normal and abnormal pre-antral follicle development-such as insulin-like growth factors and sex steroids-have a role in aberrant folliculogenesis in PCOS. Significant abnormalities in the very earliest stages of folliculogenesis may be the root cause of anovulation in PCOS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes.

            Reactive oxygen species (ROS) are generated as by-products of aerobic respiration and metabolism. Mammalian cells have evolved a variety of enzymatic mechanisms to control ROS production, one of the central elements in signal transduction pathways involved in cell proliferation, differentiation and apoptosis. Antioxidants also ensure defenses against ROS-induced damage to lipids, proteins and DNA. ROS and antioxidants have been implicated in the regulation of reproductive processes in both animal and human, such as cyclic luteal and endometrial changes, follicular development, ovulation, fertilization, embryogenesis, embryonic implantation, and placental differentiation and growth. In contrast, imbalances between ROS production and antioxidant systems induce oxidative stress that negatively impacts reproductive processes. High levels of ROS during embryonic, fetal and placental development are a feature of pregnancy. Consequently, oxidative stress has emerged as a likely promoter of several pregnancy-related disorders, such as spontaneous abortions, embryopathies, preeclampsia, fetal growth restriction, preterm labor and low birth weight. Nutritional and environmental factors may contribute to such adverse pregnancy outcomes and increase the susceptibility of offspring to disease. This occurs, at least in part, via impairment of the antioxidant defense systems and enhancement of ROS generation which alters cellular signalling and/or damage cellular macromolecules. The links between oxidative stress, the female reproductive system and development of adverse pregnancy outcomes, constitute important issues in human and animal reproductive medicine. This review summarizes the role of ROS in female reproductive processes and the state of knowledge on the association between ROS, oxidative stress, antioxidants and pregnancy outcomes in different mammalian species. Copyright 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formation and early development of follicles in the polycystic ovary.

              Polycystic ovary syndrome is the most common cause of anovulatory infertility. It has long-term health implications and is an important risk factor for type 2 diabetes. However, little is known about the cause of polycystic ovaries. We have used detailed morphological analysis to assess the hypothesis that there is an intrinsic ovarian abnormality that affects the earliest stages of follicular development. We took small cortical biopsies during routine laparoscopy from 24 women with normal ovaries and regular cycles and from 32 women with polycystic ovaries, 16 of whom had regular, ovulatory cycles and 16 of whom had oligomenorrhoea. We used computerised image analysis to assess the density and developmental stage of small preantral follicles in serial sections of fixed tissue. Median density of small preantral follicles, including those at primordial and primary stages, was six-fold greater in biopsies from polycystic ovaries in anovulatory women than in normal ovaries (p=0.009). In both ovulatory and anovulatory women with polycystic ovaries, we noted a significant increase in the percentage of early growing (primary) follicles and a reciprocal decrease in the proportion of primordial follicles compared with normal ovaries. Our findings indicate that there are fundamental differences between polycystic and normal ovaries in early follicular development, suggesting an intrinsic ovarian abnormality. The increased density of small preantral follicles in polycystic ovaries could result from increased population of the fetal ovary by germ cells, or from decreased rate of loss of oocytes during late gestation, childhood, and puberty.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                3 October 2013
                : 8
                : 10
                : e76460
                Affiliations
                [1]The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
                Institut Jacques Monod, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: YM YQ JYL. Performed the experiments: YQ YM. Analyzed the data: YQ LG. Contributed reagents/materials/analysis tools: LG LBC YGC. Wrote the paper: YM YQ.

                Article
                PONE-D-13-24348
                10.1371/journal.pone.0076460
                3789707
                24098506
                9283a686-52ab-4283-b1a7-a5cba17a0f75
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 June 2013
                : 26 August 2013
                Page count
                Pages: 6
                Funding
                This study was supported by projects from China National Nature Foundation (NO.81200439). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article