15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Suppression of NLRP3/Caspase-1/GSDMD Mediated Corneal Epithelium Pyroptosis Using Melatonin-Loaded Liposomes to Inhibit Benzalkonium Chloride-Induced Dry Eye Disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Benzalkonium chloride (BAC) is widely employed as a preservative in eye drops, which will cause the death of corneal epithelial cells due to ROS production, DNA strand breakage, and mitochondrial dysfunction, resulting in dry eye disease (DED)-like changes in ocular surface tissues. In this study, Melatonin (MT) liposomes (TAT-MT-LIPs) designed by loading MT into TAT-modified liposomes have been developed, characterized, and used for inhibiting BAC-induced DED (BAC-DED).

          Methods

          The TAT was chemically grafted onto the Mal-PEG 2000-DSPE by Michael’s addition between the sulfhydryl group in TAT and the maleimide group in Mal-PEG 2000-DSPE. TAT-MT-LIPs were prepared using film dispersion followed by the extrusion method and topically treated in rats once a day. BAC-DED was induced in rats by topical administration with 0.2% BAC twice daily. Defects, edema, and inflammation of the corneas, as well as IOP, were examined. Histologic analyses of corneas were performed to assess the change of mitochondrial DNA oxidation and NLRP3/Caspase-1/GSDMD signaling transduction.

          Results

          After topical administration, TAT-MT-LIPs significantly alleviated DED-clinical symptoms of experimental animals by inhibiting tissue inflammation and preventing the loss of the corneal epithelium and conjunctival goblet cells. Our data suggested continuous ocular surface exposure of BAC-induced NLRP3/Caspase-1/GSDMD mediated corneal epithelium pyroptosis, which was not reported before. BAC caused substantial mt-DNA oxidation, which promoted the transduction of NLRP3/Caspase-1/GSDMD and consequent corneal epithelium pyroptosis. TAT-MT-LIPs could efficiently suppress the BAC-induced corneal epithelium pyroptosis and inflammation by inhibiting mt-DNA oxidation and the subsequent signal transmission.

          Conclusion

          NLRP3/Caspase-1/GSDMD mediated corneal epithelium pyroptosis is involved in the development of BAC-DED. The present study provided new insights into the adverse effects of BAC, which can serve as a new target for protecting corneal epithelium when applying BAC as a preservative in eye drops. The developed TAT-MT-LIPs can efficiently inhibit BAC-DED and give great potential to be developed as a new DED treatment.

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          The NLRP3 inflammasome: molecular activation and regulation to therapeutics

          NLRP3 (NACHT, LRR and PYD domains-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase-1-dependent release of the proinflammatory cytokines, IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical basis of NLRP3 activation and regulation, and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.

            Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd(-/-) mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd(-/-) mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TFOS DEWS II Epidemiology Report

              The subcommittee reviewed the prevalence, incidence, risk factors, natural history, morbidity and questionnaires reported in epidemiological studies of dry eye disease (DED). A meta-analysis of published prevalence data estimated the impact of age and sex. Global mapping of prevalence was undertaken. The prevalence of DED ranged from 5 to 50%. The prevalence of signs was higher and more variable than symptoms. There were limited prevalence studies in youth and in populations south of the equator. The meta-analysis confirmed that prevalence increases with age, however signs showed a greater increase per decade than symptoms. Women have a higher prevalence of DED than men, although differences become significant only with age. Risk factors were categorized as modifiable/non-modifiable, and as consistent, probable or inconclusive. Asian ethnicity was a mostly consistent risk factor. The economic burden and impact of DED on vision, quality of life, work productivity, psychological and physical impact of pain, are considerable, particularly costs due to reduced work productivity. Questionnaires used to evaluate DED vary in their utility. Future research should establish the prevalence of disease of varying severity, the incidence in different populations and potential risk factors such as youth and digital device usage. Geospatial mapping might elucidate the impact of climate, environment and socioeconomic factors. Given the limited study of the natural history of treated and untreated DED, this remains an important area for future research.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                ijn
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                09 May 2023
                2023
                : 18
                : 2447-2463
                Affiliations
                [1 ]National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University , Wenzhou, 325027, People’s Republic of China
                [2 ]State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Wenzhou Medical University , Wenzhou, 325027, People’s Republic of China
                Author notes
                Correspondence: Kaihui Nan; Sen Lin, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou, 325027, People’s Republic of China, Tel +86-577-88067962, Email lin_sen@wmu.edu.cn; nankh@l63.com
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0001-6413-4508
                http://orcid.org/0000-0001-8284-9988
                Article
                403337
                10.2147/IJN.S403337
                10182801
                37192892
                924eac64-2c80-4ac7-987e-435a79cb6bf3
                © 2023 Lou et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 04 January 2023
                : 03 May 2023
                Page count
                Figures: 8, References: 68, Pages: 17
                Categories
                Original Research

                Molecular medicine
                melatonin liposome,dry eye disease,benzalkonium chloride,pyroptosis,nlrp3/caspase-1/gsdmd signaling axis

                Comments

                Comment on this article