Long-duration hippocampal sharp wave ripples improve memory – ScienceOpen
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Long-duration hippocampal sharp wave ripples improve memory

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hippocampal sharp wave ripples (SPW-Rs) have been hypothesized as a mechanism for memory consolidation and action planning. The duration of ripples shows a skewed distribution with a minority of long-duration events. We discovered that long-duration ripples are increased in situations demanding memory in rats. Prolongation of spontaneously occurring ripples by optogenetic stimulation, but not randomly induced ripples, increased memory during maze learning. The neuronal content of randomly induced ripples was similar to short-duration spontaneous ripples and contained little spatial information. The spike content of the optogenetically prolonged ripples was biased by the ongoing, naturally initiated neuronal sequences. Prolonged ripples recruited new neurons that represented either arm of the maze. Long-duration hippocampal SPW-Rs replaying large parts of planned routes are critical for memory.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Awake hippocampal sharp-wave ripples support spatial memory.

          The hippocampus is critical for spatial learning and memory. Hippocampal neurons in awake animals exhibit place field activity that encodes current location, as well as sharp-wave ripple (SWR) activity during which representations based on past experiences are often replayed. The relationship between these patterns of activity and the memory functions of the hippocampus is poorly understood. We interrupted awake SWRs in animals learning a spatial alternation task. We observed a specific learning and performance deficit that persisted throughout training. This deficit was associated with awake SWR activity, as SWR interruption left place field activity and post-experience SWR reactivation intact. These results provide a link between awake SWRs and hippocampal memory processes, which suggests that awake replay of memory-related information during SWRs supports learning and memory-guided decision-making.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Awake replay of remote experiences in the hippocampus

            Hippocampal replay is thought to be essential for the consolidation of event memories in hippocampal–neocortical networks. Replay is present during both sleep and waking behavior, but while sleep replay involves the reactivation of stored representations in the absence of specific sensory inputs, awake replay is thought to depend on sensory input from the current environment. Here we show that stored representations are reactivated during both waking and sleep replay. We found frequent awake replay of sequences of rat hippocampal place cells from a previous experience. This spatially remote replay was as common as local replay of the current environment and was most robust when the animal had recently been in motion as compared to during extended periods of quiescence. These results indicate that the hippocampus consistently replays past experiences during brief pauses in waking behavior, suggesting a role for waking replay in memory consolidation and retrieval.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop.

              Theta oscillations are believed to play an important role in the coordination of neuronal firing in the entorhinal (EC)-hippocampal system but the underlying mechanisms are not known. We simultaneously recorded from neurons in multiple regions of the EC-hippocampal loop and examined their temporal relationships. Theta-coordinated synchronous spiking of EC neuronal populations predicted the timing of current sinks in target layers in the hippocampus. However, the temporal delays between population activities in successive anatomical stages were longer (typically by a half theta cycle) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We hypothesize that the temporal windows set by the theta cycles allow for local circuit interactions and thus a considerable degree of computational independence in subdivisions of the EC-hippocampal loop.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                June 13 2019
                June 14 2019
                June 13 2019
                June 14 2019
                : 364
                : 6445
                : 1082-1086
                Article
                10.1126/science.aax0758
                6693581
                31197012
                9236c836-f39c-450e-88fb-75de5d067e6b
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content253

                Cited by175

                Most referenced authors203