Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Relationship between the microsomal epoxide hydrolase and the hepatocellular transport of bile acids and xenobiotics.

      1 , , ,
      The Biochemical journal
      Portland Press Ltd.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently two different bile-acid carriers for the hepatocellular sodium-dependent uptake of taurocholate have been described. The first transport system was isolated and characterized by functional expression cloning in Xenopus laevis oocytes. The corresponding cDNA clone, named Ntcp for Na+/taurocholate co-transporting polypeptide, codes for a protein of 362 amino acids and shows no similarity to previously known sequences. The transport function of this carrier system is well documented by expression in Xenopus laevis oocytes and by transient and stably transfected cell lines. In addition, several lines of evidence implied that the well-known xenobiotic-metabolizing enzyme microsomal epoxide hydrolase (mEH, EC 3.3.2.3) is also able to mediate sinusoidal uptake of taurocholate. Furthermore, it was claimed that the same enzyme also mediates the uptake of the conjugated bile acid into the smooth endoplasmic reticulum (ER). No direct proof of the transport function of mEH by its heterologous expression has yet been published. In the present work we used a stable transfected cell line that expressed high levels of heterologous mEH for uptake studies of various bile acids and the loop diuretic bumetanide. The uptake of the conjugated bile acid taurocholate, of the non-conjugated bile acid cholate and of the organic anion bumetanide was measured in the transfected as well as in the non-transfected parental cell line. These organic anions represent the main substrates of the known transport systems for organic anions in the rat liver. The results show that the microsomal epoxide hydrolase is unable to transport taurocholate, cholate or bumetanide. Furthermore, Western-blot analysis revealed the expression of mEH in hepatoma tumor cell lines, which show no transport activity for these organic anions. These results show that it is unlikely that mEH can mediate the transport of these substrates.

          Related collections

          Author and article information

          Journal
          Biochem J
          The Biochemical journal
          Portland Press Ltd.
          0264-6021
          0264-6021
          Nov 01 1995
          : 311 ( Pt 3)
          : Pt 3
          Affiliations
          [1 ] Institute of Pharmacology and Toxicology, Giessen, Federal Republic of Germany.
          Article
          10.1042/bj3110975
          1136097
          7487959
          9204f600-7014-4652-8551-ec8390d963a6
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content87

          Cited by5