26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of zygote vitrification timing on pregnancy rate in frozen-thawed IVF/ICSI cycles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction: Cryopreservation of bipronuclear (2PN) stage zygotes is an integral part of IVF laboratory practice in countries with strict embryo culture legislation. Vitrification of zygotes is compatible with several strategies in infertility treatments holding a freeze-all indication and allows for effective workload management in settings with limited resources. Although it yields high survival rates and clinical outcomes, the ideal timing to commence vitrification of zygotes is elusive while it is empirically practiced in the window between 17 and 21 h post-insemination (hpi). We aimed to deduce the association between pregnancy rate and the time interval from insemination (IVF and ICSI) to vitrification to contribute to the standardization ofzygote cryopreservation.

          Methods: A retrospective analysis of data on vitrification timings and pregnancy outcomes collected between 2011 and 2019 was performed. All included women received an embryo transfer after warming of vitrified zygotes at the 2PN stage.

          Results: A total of 468 embryo transfers were included of which 182 (38.9%) resulted in pregnancy and 286 (61.1%) not. Vitrification was on average performed 18.74 ±0.63 hpi in the pregnant group and 18.62 ± 0.64 hpi in the non-pregnant group (OR 1.36, 95% CI 1.01; 1.83, p = 0.045). A multivariate analysis controlling for uterine pathologies, maternal age, AMH, the number of MII oocytes, previous history of pregnancy success, endometriosis, AFC, nicotine intake and male factor infertility showed no predictive value of vitrification timing on pregnancy rate. Three time intervals between insemination and vitrification were defined: 17:00 to 18:00 hpi (Group A), 18:01 to 19:00 hpi (Group B) and 19:01 to 21:00 hpi (Group C). Pregnancy occurred in 40/130 women (30.80%) in Group A, in 115/281 women (40.90%) in Group B and in 27/57 women (47.40%) in Group C. Univariate but not multivariate analysis showed a significantly higher pregnancy rate after the latest time interval between insemination and 2PN vitrification when compared to the earliest (Group C vs. A, OR 2.03, 95% CI 1.07; 3.84, p = 0.031).

          Discussion: These findings encourage further investigation on the impact of vitrification timing on clinical outcomes and hold the potential to standardize cryopreservation of zygotes from IVF/ICSI cycles to eventually improve the quality of long-term ART outcomes.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.

          Much of biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Visualizing spatiotemporal dynamics of multicellular cell-cycle progression.

            The cell-cycle transition from G1 to S phase has been difficult to visualize. We have harnessed antiphase oscillating proteins that mark cell-cycle transitions in order to develop genetically encoded fluorescent probes for this purpose. These probes effectively label individual G1 phase nuclei red and those in S/G2/M phases green. We were able to generate cultured cells and transgenic mice constitutively expressing the cell-cycle probes, in which every cell nucleus exhibits either red or green fluorescence. We performed time-lapse imaging to explore the spatiotemporal patterns of cell-cycle dynamics during the epithelial-mesenchymal transition of cultured cells, the migration and differentiation of neural progenitors in brain slices, and the development of tumors across blood vessels in live mice. These mice and cell lines will serve as model systems permitting unprecedented spatial and temporal resolution to help us better understand how the cell cycle is coordinated with various biological events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method.

              Vitrification is frequently referred to as a novel technology of cryopreservation in embryology, although some young embryologists were born after its first successful application. Unfortunately, in spite of the accumulated evidence regarding its enormous potential value, most domestic animal and human laboratories use exclusively the traditional slow-rate freezing with its compromised efficiency and inconsistency. The purpose of this paper is to clarify terms and conditions, to summarize arguments supporting or disapproving the use of vitrification, and to outline its role among assisted reproductive technologies. To provide evidence for the potential significance of vitrification, achievements with the Cryotop technology, an advanced version of the "minimal volume approaches" is analyzed. This technology alone has resulted in more healthy babies after cryopreservation of blastocysts than any other vitrification technique, and more successful human oocyte vitrification resulting in normal births than any other cryopreservation method. The value of this method is also demonstrated by achievements in the field of domestic animal embryology. A modification of the technique using a hermetically sealed container for storage may help to eliminate potential dangers of disease transmission and open the way for widespread application for cryopreservation at all phases of oocyte and preimplantation embryo development in mammals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                13 January 2023
                2023
                : 11
                : 1095069
                Affiliations
                [1] 1 Department of Reproductive Endocrinology , University Hospital Zurich , Zurich, Switzerland
                [2] 2 Faculty of Medicine , University of Zurich , Zurich, Switzerland
                Author notes

                Edited by: Ciler Celik-Ozenci, Koç University, Türkiye

                Reviewed by: Renee J. Chosed, University of South Carolina, United States

                Sinan Ozkavukcu, University of Dundee, United Kingdom

                *Correspondence: Sofia Makieva, makievasofia@ 123456gmail.com

                This article was submitted to Molecular and Cellular Reproduction, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                1095069
                10.3389/fcell.2023.1095069
                9880319
                36711030
                91dde147-d6e6-4632-8a71-5f47849687bd
                Copyright © 2023 Makieva, Stähli, Xie, Gil, Sachs and Leeners.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 November 2022
                : 03 January 2023
                Categories
                Cell and Developmental Biology
                Original Research

                vitrification,bipronuclear,pregnancy,2pn,zygote,icsi,ivf,timing
                vitrification, bipronuclear, pregnancy, 2pn, zygote, icsi, ivf, timing

                Comments

                Comment on this article