16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbiome Composition in Both Wild-Type and Disease Model Mice Is Heavily Influenced by Mouse Facility

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Murine models have become essential tools for understanding the complex interactions between gut microbes, their hosts, and disease. While many intra-facility factors are known to influence the structure of mouse microbiomes, the contribution of inter-facility variation to mouse microbiome composition, especially in the context of disease, remains under-investigated. We replicated microbiome experiments using identical mouse lines housed in two separate animal facilities and report drastic differences in composition of microbiomes based upon animal facility of origin. We observed facility-specific microbiome signatures in the context of a disease model [the Ednrb (endothelin receptor type B) Hirschsprung disease mouse] and in normal C57BL/6J mice. Importantly, these facility differences were independent of cage, sex, or sequencing-related influence. In addition, we investigated the reproducibility of microbiome dysbiosis previously associated with Ednrb -/- (knock-out; KO) mice. While we observed genotype-based differences in composition between wild-type (WT) and KO mice, these differences were inconsistent with the previously reported conclusions. Furthermore, the genotype-based differences were not identical across animal facilities. Despite this, through differential abundance testing, we identified several conserved candidate taxa and candidate operational taxonomic units that may play a role in disease promotion or protection. Overall, our findings raise the possibility that previously reported microbiome-disease associations from murine studies conducted in a single facility may be heavily influenced by facility-specific effects. More generally, these results provide a strong rationale for replication of mouse microbiome studies at multiple facilities, and for the meticulous collection of metadata that will allow the confounding effects of facility to be more specifically identified.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Towards the human intestinal microbiota phylogenetic core.

            The paradox of a host specificity of the human faecal microbiota otherwise acknowledged as characterized by global functionalities conserved between humans led us to explore the existence of a phylogenetic core. We investigated the presence of a set of bacterial molecular species that would be altogether dominant and prevalent within the faecal microbiota of healthy humans. A total of 10 456 non-chimeric bacterial 16S rRNA sequences were obtained after cloning of PCR-amplified rDNA from 17 human faecal DNA samples. Using alignment or tetranucleotide frequency-based methods, 3180 operational taxonomic units (OTUs) were detected. The 16S rRNA sequences mainly belonged to the phyla Firmicutes (79.4%), Bacteroidetes (16.9%), Actinobacteria (2.5%), Proteobacteria (1%) and Verrumicrobia (0.1%). Interestingly, while most of OTUs appeared individual-specific, 2.1% were present in more than 50% of the samples and accounted for 35.8% of the total sequences. These 66 dominant and prevalent OTUs included members of the genera Faecalibacterium, Ruminococcus, Eubacterium, Dorea, Bacteroides, Alistipes and Bifidobacterium. Furthermore, 24 OTUs had cultured type strains representatives which should be subjected to genome sequence with a high degree of priority. Strikingly, 52 of these 66 OTUs were detected in at least three out of four recently published human faecal microbiota data sets, obtained with very different experimental procedures. A statistical model confirmed these OTUs prevalence. Despite the species richness and a high individual specificity, a limited number of OTUs is shared among individuals and might represent the phylogenetic core of the human intestinal microbiota. Its role in human health deserves further study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease

              Background The gut microbiota is thought to play a key role in the development of the inflammatory bowel diseases Crohn's disease (CD) and ulcerative colitis (UC). Shifts in the composition of resident bacteria have been postulated to drive the chronic inflammation seen in both diseases (the "dysbiosis" hypothesis). We therefore specifically sought to compare the mucosa-associated microbiota from both inflamed and non-inflamed sites of the colon in CD and UC patients to that from non-IBD controls and to detect disease-specific profiles. Results Paired mucosal biopsies of inflamed and non-inflamed intestinal tissue from 6 CD (n = 12) and 6 UC (n = 12) patients were compared to biopsies from 5 healthy controls (n = 5) by in-depth sequencing of over 10,000 near full-length bacterial 16S rRNA genes. The results indicate that mucosal microbial diversity is reduced in IBD, particularly in CD, and that the species composition is disturbed. Firmicutes were reduced in IBD samples and there were concurrent increases in Bacteroidetes, and in CD only, Enterobacteriaceae. There were also significant differences in microbial community structure between inflamed and non-inflamed mucosal sites. However, these differences varied greatly between individuals, meaning there was no obvious bacterial signature that was positively associated with the inflamed gut. Conclusions These results may support the hypothesis that the overall dysbiosis observed in inflammatory bowel disease patients relative to non-IBD controls might to some extent be a result of the disturbed gut environment rather than the direct cause of disease. Nonetheless, the observed shifts in microbiota composition may be important factors in disease maintenance and severity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                20 July 2018
                2018
                : 9
                : 1598
                Affiliations
                [1] 1Department of Molecular Biology, University of Wyoming , Laramie, WY, United States
                [2] 2Wyoming Geographic Information Science Center, University of Wyoming , Laramie, WY, United States
                [3] 3Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School , Boston, MA, United States
                [4] 4Department of Botany, University of Wyoming , Laramie, WY, United States
                Author notes

                Edited by: John R. Battista, Louisiana State University, United States

                Reviewed by: Richard Allen White III, RAW Molecular Systems (RMS) LLC, United States; Douglas Ruben Call, Washington State University, United States

                *Correspondence: Naomi L. Ward, nlward@ 123456uwyo.edu

                This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.01598
                6062620
                30079054
                91c9fbb8-87e9-4dd4-85c7-80535e5dbb89
                Copyright © 2018 Parker, Albeke, Gigley, Goldstein and Ward.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 April 2018
                : 27 June 2018
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 70, Pages: 13, Words: 0
                Funding
                Funded by: National Institute of General Medical Sciences 10.13039/100000057
                Award ID: #DK098696-01A1
                Award ID: # 2P20GM103432
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                reproducibility,replication,mouse microbiome,enterocolitis,c57bl/6j,hirschsprung disease

                Comments

                Comment on this article