13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemical alternatives assessment of different flame retardants – A case study including multi-walled carbon nanotubes as synergist

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Flame retardants (FRs) are a diverse group of chemicals used as additives in a wide range of products to inhibit, suppress, or delay ignition and to prevent the spread of fire. Halogenated FRs (HFRs) are widely used because of their low impact on other material properties and the low loading levels necessary to meet the required flame retardancy. Health and environmental hazards associated with some halogenated FRs have driven research for identifying safer alternatives. A variety of halogen-free FRs are available on the market, including organic (phosphorus and nitrogen based chemicals) and inorganic (metals) materials. Multi-walled carbon nanotubes (MWCNT) have been demonstrated to act as an effective/synergistic co-additive in some FR applications and could thereby contribute to reducing the loading of FRs in products and improving their performance.

          As part of the FP7 project DEROCA we carried out a chemical alternatives assessment (CAA). This is a methodology for identifying, comparing and selecting safer alternatives to chemicals of concern based on criteria for categorising human and environmental toxicity as well as environmental fate. In the project we assessed the hazard data of different halogen-free FRs to be applied in 5 industrial and consumer products and here we present the results for MWCNT, aluminium diethylphosphinate, aluminium trihydroxide, N-alkoxy hindered amines and red phosphorus compared to the HFR decabromodiphenylether. We consulted the REACH guidance, the criteria of the U.S.-EPA Design for Environment (DfE) and the GreenScreen® Assessment to assess and compare intrinsic properties affecting the hazard potential.

          A comparison/ranking of exposure reference values such as Derived No Effect Levels (DNELs) showed that FRs of concern are not identified by a low DNEL. A comparison based on hazard designations according to the U.S.-EPA DfE and GreenScreen® for human health endpoints, aquatic toxicity and environmental fate showed that the major differences between FRs of concern and their proposed alternatives are the potential for bioaccumulation and CMR (carcinogenic, mutagenic or reprotoxic) effects. As most alternatives are inorganic chemicals, persistence (alone) is not a suitable criterion.

          From our experiences in carrying out a CAA we conclude: i) REACH registration dossiers provide a comprehensive source of hazard information for an alternative assessment. It is important to consider that the presented data is subject to changes and its quality is variable. ii) Correct identification of the chemicals is crucial to retrieve the right data. This can be challenging for mixtures, reaction products or nanomaterials or when only trade names are available. iii) The quality of the data and the practice on how to fill data gaps can have a huge impact on the results and conclusions. iv) Current assessment criteria have mainly been developed for organic chemicals and create challenges when applied to inorganic solids, including nanomaterials. It is therefore crucial to analyse and report uncertainties for each decision making step.

          Highlights

          • Chemical alternatives assessment is a useful tool to find safer flame retardants.

          • Mainly bioaccumulation and persistence contribute to high hazard scores.

          • MWCNTs can improve the performance of halogen-free flame retardants.

          • Repeated inhalation toxicity is the major concern for MWCNT.

          • Data availability and quality can have a huge impact on the assessment outcome.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Carbon nanotubes: present and future commercial applications.

          Worldwide commercial interest in carbon nanotubes (CNTs) is reflected in a production capacity that presently exceeds several thousand tons per year. Currently, bulk CNT powders are incorporated in diverse commercial products ranging from rechargeable batteries, automotive parts, and sporting goods to boat hulls and water filters. Advances in CNT synthesis, purification, and chemical modification are enabling integration of CNTs in thin-film electronics and large-area coatings. Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma

            The unique hazard posed to the pleural mesothelium by asbestos has engendered concern in potential for a similar risk from high aspect ratio nanoparticles (HARN) such as carbon nanotubes. In the course of studying the potential impact of HARN on the pleura we have utilised the existing hypothesis regarding the role of the parietal pleura in the response to long fibres. This review seeks to synthesise our new data with multi-walled carbon nanotubes (CNT) with that hypothesis for the behaviour of long fibres in the lung and their retention in the parietal pleura leading to the initiation of inflammation and pleural pathology such as mesothelioma. We describe evidence that a fraction of all deposited particles reach the pleura and that a mechanism of particle clearance from the pleura exits, through stomata in the parietal pleura. We suggest that these stomata are the site of retention of long fibres which cannot negotiate them leading to inflammation and pleural pathology including mesothelioma. We cite thoracoscopic data to support the contention, as would be anticipated from the preceding, that the parietal pleura is the site of origin of pleural mesothelioma. This mechanism, if it finds support, has important implications for future research into the mesothelioma hazard from HARN and also for our current view of the origins of asbestos-initiated pleural mesothelioma and the common use of lung parenchymal asbestos fibre burden as a correlate of this tumour, which actually arises in the parietal pleura.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety.

              Carbon nanotubes (CNT) are an important new class of technological materials that have numerous novel and useful properties. The forecast increase in manufacture makes it likely that increasing human exposure will occur, and as a result, CNT are beginning to come under toxicological scrutiny. This review seeks to set out the toxicological paradigms applicable to the toxicity of inhaled CNT, building on the toxicological database on nanoparticles (NP) and fibers. Relevant workplace regulation regarding exposure is also considered in the light of our knowledge of CNT. CNT could have features of both NP and conventional fibers, and so the current paradigm for fiber toxicology, which is based on mineral fibers and synthetic vitreous fibers, is discussed. The NP toxicology paradigm is also discussed in relation to CNT. The available peer-reviewed literature suggests that CNT may have unusual toxicity properties. In particular, CNT seem to have a special ability to stimulate mesenchymal cell growth and to cause granuloma formation and fibrogenesis. In several studies, CNT have more adverse effects than the same mass of NP carbon and quartz, the latter a commonly used benchmark of particle toxicity. There is, however, no definitive inhalation study available that would avoid the potential for artifactual effects due to large mats and aggregates forming during instillation exposure procedures. Studies also show that CNT may exhibit some of their effects through oxidative stress and inflammation. CNT represent a group of particles that are growing in production and use, and therefore, research into their toxicology and safe use is warranted.
                Bookmark

                Author and article information

                Contributors
                Journal
                Environ Int
                Environ Int
                Environment International
                Elsevier Science
                0160-4120
                1873-6750
                1 April 2017
                April 2017
                : 101
                : 27-45
                Affiliations
                European Commission, Joint Research Centre (JRC), Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, I-21027 Ispra, VA, Italy
                Author notes
                [* ]Corresponding author. Karin.aschberger@ 123456ec.europa.eu
                Article
                S0160-4120(16)30604-3
                10.1016/j.envint.2016.12.017
                5357113
                28161204
                91c9240e-51b8-4ef7-beb9-7fe3211357bc
                © 2016 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 October 2016
                : 16 December 2016
                : 16 December 2016
                Categories
                Article

                chemical alternatives assessment,flame retardant,hazard,risk,multi-walled carbon nanotubes

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content83

                Cited by14

                Most referenced authors1,009