10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cell wall hemicellulose for sustainable industrial utilization

      , ,
      Renewable and Sustainable Energy Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references458

          • Record: found
          • Abstract: found
          • Article: not found

          Features of promising technologies for pretreatment of lignocellulosic biomass.

          N. Mosier (2005)
          Cellulosic plant material represents an as-of-yet untapped source of fermentable sugars for significant industrial use. Many physio-chemical structural and compositional factors hinder the enzymatic digestibility of cellulose present in lignocellulosic biomass. The goal of any pretreatment technology is to alter or remove structural and compositional impediments to hydrolysis in order to improve the rate of enzyme hydrolysis and increase yields of fermentable sugars from cellulose or hemicellulose. These methods cause physical and/or chemical changes in the plant biomass in order to achieve this result. Experimental investigation of physical changes and chemical reactions that occur during pretreatment is required for the development of effective and mechanistic models that can be used for the rational design of pretreatment processes. Furthermore, pretreatment processing conditions must be tailored to the specific chemical and structural composition of the various, and variable, sources of lignocellulosic biomass. This paper reviews process parameters and their fundamental modes of action for promising pretreatment methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hemicelluloses.

            Hemicelluloses are polysaccharides in plant cell walls that have beta-(1-->4)-linked backbones with an equatorial configuration. Hemicelluloses include xyloglucans, xylans, mannans and glucomannans, and beta-(1-->3,1-->4)-glucans. These types of hemicelluloses are present in the cell walls of all terrestrial plants, except for beta-(1-->3,1-->4)-glucans, which are restricted to Poales and a few other groups. The detailed structure of the hemicelluloses and their abundance vary widely between different species and cell types. The most important biological role of hemicelluloses is their contribution to strengthening the cell wall by interaction with cellulose and, in some walls, with lignin. These features are discussed in relation to widely accepted models of the primary wall. Hemicelluloses are synthesized by glycosyltransferases located in the Golgi membranes. Many glycosyltransferases needed for biosynthesis of xyloglucans and mannans are known. In contrast, the biosynthesis of xylans and beta-(1-->3,1-->4)-glucans remains very elusive, and recent studies have led to more questions than answers.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hydrolysis of lignocellulosic materials for ethanol production: a review

                Bookmark

                Author and article information

                Journal
                Renewable and Sustainable Energy Reviews
                Renewable and Sustainable Energy Reviews
                Elsevier BV
                13640321
                July 2021
                July 2021
                : 144
                : 110996
                Article
                10.1016/j.rser.2021.110996
                91af2777-7692-4c58-81ab-d6b2b09e6ce5
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article