108
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metabolic features of chronic fatigue syndrome.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          More than 2 million people in the United States have myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). We performed targeted, broad-spectrum metabolomics to gain insights into the biology of CFS. We studied a total of 84 subjects using these methods. Forty-five subjects (n = 22 men and 23 women) met diagnostic criteria for ME/CFS by Institute of Medicine, Canadian, and Fukuda criteria. Thirty-nine subjects (n = 18 men and 21 women) were age- and sex-matched normal controls. Males with CFS were 53 (±2.8) y old (mean ± SEM; range, 21-67 y). Females were 52 (±2.5) y old (range, 20-67 y). The Karnofsky performance scores were 62 (±3.2) for males and 54 (±3.3) for females. We targeted 612 metabolites in plasma from 63 biochemical pathways by hydrophilic interaction liquid chromatography, electrospray ionization, and tandem mass spectrometry in a single-injection method. Patients with CFS showed abnormalities in 20 metabolic pathways. Eighty percent of the diagnostic metabolites were decreased, consistent with a hypometabolic syndrome. Pathway abnormalities included sphingolipid, phospholipid, purine, cholesterol, microbiome, pyrroline-5-carboxylate, riboflavin, branch chain amino acid, peroxisomal, and mitochondrial metabolism. Area under the receiver operator characteristic curve analysis showed diagnostic accuracies of 94% [95% confidence interval (CI), 84-100%] in males using eight metabolites and 96% (95% CI, 86-100%) in females using 13 metabolites. Our data show that despite the heterogeneity of factors leading to CFS, the cellular metabolic response in patients was homogeneous, statistically robust, and chemically similar to the evolutionarily conserved persistence response to environmental stress known as dauer.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome.

          Insulin resistance is a key feature of the metabolic syndrome and often progresses to type 2 diabetes. Both insulin resistance and type 2 diabetes are characterized by dyslipidemia, which is an important and common risk factor for cardiovascular disease. Diabetic dyslipidemia is a cluster of potentially atherogenic lipid and lipoprotein abnormalities that are metabolically interrelated. Recent evidence suggests that a fundamental defect is an overproduction of large very low-density lipoprotein (VLDL) particles, which initiates a sequence of lipoprotein changes, resulting in higher levels of remnant particles, smaller LDL, and lower levels of high-density liporotein (HDL) cholesterol. These atherogenic lipid abnormalities precede the diagnosis of type 2 diabetes by several years, and it is thus important to elucidate the mechanisms involved in the overproduction of large VLDL particles. Here, we review the pathophysiology of VLDL biosynthesis and metabolism in the metabolic syndrome. We also review recent research investigating the relation between hepatic accumulation of lipids and insulin resistance, and sources of fatty acids for liver fat and VLDL biosynthesis. Finally, we briefly discuss current treatments for lipid management of dyslipidemia and potential future therapeutic targets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance.

            In the nematode Caenorhabditis elegans, formation of the long-lived dauer larva and adult aging are both controlled by insulin/insulin-like growth factor-1 signaling. Potentially, increased adult life span in daf-2 insulin/insulin-like growth factor-1 receptor mutants results from mis-expression in the adult of a dauer larva longevity program. By using oligonucleotide microarray analysis, we identified a dauer transcriptional signature in daf-2 mutant adults. By means of a nonbiased statistical approach, we identified gene classes whose expression is altered similarly in dauers and daf-2 mutants, which represent potential determinants of life span. These include known determinants of longevity; the small heat shock protein/alpha-crystallins are up-regulated in both milieus. The cytochrome P450, short-chain dehydrogenase/reductase, UDP-glucuronosyltransferase, and glutathione S-transferase (in daf-2 mutants) gene classes were also up-regulated. These four gene classes act together in metabolism and excretion of toxic endobiotic and xenobiotic metabolites. This suggests that diverse toxic lipophilic and electrophilic metabolites, disposed of by phase 1 and phase 2 drug metabolism, may be the major determinants of the molecular damage that causes aging. In addition, we observed down-regulation of genes linked to nutrient uptake, including nhx-2 and pep-2. These work together in the uptake of dipeptides in the intestine, implying dietary restriction in daf-2 mutants. Some gene groups up-regulated in dauers and/or daf-2 were enriched for certain promoter elements as follows: the daf-16-binding element, the heat shock-response element, the heat shock-associated sequence, or the hif-1-response element. By contrast, the daf-16-associated element was enriched in genes down-regulated in dauers and daf-2 mutants. Thus, particular promoter elements appear longevity-associated or aging associated.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Repeated double cross validation

                Bookmark

                Author and article information

                Journal
                Proc. Natl. Acad. Sci. U.S.A.
                Proceedings of the National Academy of Sciences of the United States of America
                Proceedings of the National Academy of Sciences
                1091-6490
                0027-8424
                Sep 13 2016
                : 113
                : 37
                Affiliations
                [1 ] The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Pediatrics, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Pathology, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; rnaviaux@ucsd.edu.
                [2 ] The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Neurosciences, University of California, San Diego School of Medicine, San Diego, CA 92103-8467;
                [3 ] The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, San Diego, CA 92103-8467; Department of Medicine, University of California, San Diego School of Medicine, San Diego, CA 92103-8467;
                [4 ] Gordon Medical Associates, Santa Rosa, CA 95403.
                Article
                1607571113
                10.1073/pnas.1607571113
                5027464
                27573827
                919a7fa5-97ed-4518-89c4-8b6112ab921d
                History

                cell danger response,chronic fatigue syndrome,dauer,metabolomics,mitochondria

                Comments

                Comment on this article