36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long-term potentiation (LTP) of C-fiber-evoked field potentials in spinal dorsal horn may be relevant to hyperalgesia, an increased response to noxious stimulation. The mechanism underlying this form of synaptic plasticity is, however, still unclear. Considerable evidence has shown that calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase A (PKA), and protein kinase C (PKC) are important for LTP in hippocampus. In this study, the roles of these three protein kinases in the induction and maintenance of LTP of C-fiber-evoked field potentials were evaluated by application of specific inhibitors of CaMKII (KN-93 and AIP), PKA (Rp-CPT-cAMPS), and PKC (chelerythrine and Gö 6983) at the recording segments before and after LTP induction in urethane-anesthetized Sprague-Dawley rats. We found both KN-93 and AIP, when applied at 30 min prior to tetanic stimulation, completely blocked LTP induction. At 30 min after LTP induction, KN-93 and AIP reversed LTP completely, and at 60 min after LTP induction, they depressed spinal LTP in most rats tested. Three hours after LTP induction, however, KN-93 or AIP did not affect the spinal LTP. Rp-CPT-cAMPS, chelerythrine, and Gö 6983 blocked the spinal LTP when applied at 30 min before tetanic stimulation and reversed LTP completely at 15 min after LTP induction. In contrast, at 30 min after LTP induction, the drugs never affected the spinal LTP. These results suggest that activation of CaMKII, PKA, and PKC may be crucial for the induction and the early-phase but not for the late-phase maintenance of the spinal LTP.

          Related collections

          Author and article information

          Journal
          J Neurophysiol
          Journal of neurophysiology
          American Physiological Society
          0022-3077
          0022-3077
          Mar 2004
          : 91
          : 3
          Affiliations
          [1 ] Department of Physiology, Zhongshan Medical School of Sun Yat-sen University, Guangzhou 510089, Peoples Republic of China.
          Article
          00735.2003
          10.1152/jn.00735.2003
          14586032
          91839e54-528b-4693-a533-780dea0fe219
          History

          Comments

          Comment on this article