5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intranuclear Delivery of HIF-1α-TMD Alleviates EAE via Functional Conversion of TH17 Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T helper 17 (TH17) cells are involved in several autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA). In addition to retinoic acid receptor-related orphan nuclear receptor gamma t (ROR-γt), hypoxia-inducible factor-1α (HIF-1α) is essential for the differentiation and inflammatory function of TH17 cells. To investigate the roles of HIF-1α in the functional regulation of TH17 cells under the normal physiological condition without genetic modification, the nucleus-transducible form of transcription modulation domain (TMD) of HIF-1α (ntHIF-1α-TMD) was generated by conjugating HIF-1α-TMD to Hph-1 protein transduction domain (PTD). ntHIF-1α-TMD was effectively delivered into the nucleus of T cells without cellular cytotoxicity. ntHIF-1α-TMD significantly blocked the differentiation of naïve T cells into TH17 cells in a dose-dependent manner via IL-17A and ROR-γt expression inhibition. However, T-cell activation events such as induction of CD69, CD25, and IL-2 and the differentiation potential of naïve T cells into TH1, TH2, or Treg cells were not affected by ntHIF-1α-TMD. Interestingly, TH17 cells differentiated from naïve T cells in the presence of ntHIF-1α-TMD showed a substantial level of suppressive activity toward the activated T cells, and the increase of Foxp3 and IL-10 expression was detected in these TH17 cells. When mRNA expression pattern was compared between TH17 cells and ntHIF-1α-TMD-treated TH17 cells, the expression of the genes involved in the differentiation and functions of TH17 cells was downregulated, and that of the genes necessary for immune-suppressive functions of Treg cells was upregulated. When the mice with experimental autoimmune encephalomyelitis (EAE) were treated with ntHIF-1α-TMD with anti-IL-17A mAb as a positive control, the therapeutic efficacy of ntHIF-1α-TMD in vivo was comparable with that of anti-IL-17A mAb, and ntHIF-1α-TMD-mediated therapeutic effect was contributed by the functional conversion of TH17 cells into immune-suppressive T cells. The results in this study demonstrate that ntHIF-1α-TMD can be a new therapeutic reagent for the treatment of various autoimmune diseases in which TH17 cells are dominant and pathogenic T cells.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

          Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.

            DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however, when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1alpha and correlated with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and illustrate the value of pathway relationships in the analysis of genomic profiling experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells.

              IL-17-producing T lymphocytes have been recently shown to comprise a distinct lineage of proinflammatory T helper cells, termed Th17 cells, that are major contributors to autoimmune disease. We show here that the orphan nuclear receptor RORgammat is the key transcription factor that orchestrates the differentiation of this effector cell lineage. RORgammat induces transcription of the genes encoding IL-17 and the related cytokine IL-17F in naïve CD4(+) T helper cells and is required for their expression in response to IL-6 and TGF-beta, the cytokines known to induce IL-17. Th17 cells are constitutively present throughout the intestinal lamina propria, express RORgammat, and are absent in mice deficient for RORgammat or IL-6. Mice with RORgammat-deficient T cells have attenuated autoimmune disease and lack tissue-infiltrating Th17 cells. Together, these studies suggest that RORgammat is a key regulator of immune homeostasis and highlight its potential as a therapeutic target in inflammatory diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                21 October 2021
                2021
                : 12
                : 741938
                Affiliations
                [1] 1 Department of Biotechnology, Yonsei University College of Life Science and Biotechnology , Seoul, South Korea
                [2] 2 Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University , New York, NY, United States
                [3] 3 Research Institute for Precision Immune-Medicine, Good T Cells, Inc. , Seoul, South Korea
                Author notes

                Edited by: Kutty Selva Nandakumar, Southern Medical University, China

                Reviewed by: Maliha Alikhan, Monash University, Australia; Hasan Alghetaa, University of Baghdad, Iraq

                *Correspondence: Sang-Kyou Lee, sjrlee@ 123456yonsei.ac.kr

                This article was submitted to Autoimmune and Autoinflammatory Disorders, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.741938
                8566938
                34745114
                9174ebbb-df25-477b-bc45-a1697235f215
                Copyright © 2021 Shin, Kim, Moon, Ho, Choi, Ghosh and Lee

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2021
                : 30 September 2021
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 38, Pages: 12, Words: 6139
                Funding
                Funded by: National Research Foundation of Korea , doi 10.13039/501100003725;
                Funded by: Yonsei University , doi 10.13039/501100002573;
                Categories
                Immunology
                Original Research

                Immunology
                hypoxia-inducible factor-1,th17 cells,functional conversion,experimental autoimmune encephalomyelitis,protein transduction domain

                Comments

                Comment on this article