13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of cerebral blood flow and structural penumbras in relation to white matter hyperintensities: A multi-modal magnetic resonance imaging study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Normal-appearing white matter (NAWM) surrounding WMHs is associated with decreased structural integrity and perfusion, increased risk of WMH growth, and is referred to as the WMH penumbra. Studies comparing structural and cerebral blood flow (CBF) penumbras within the same individuals are lacking, however, and would facilitate our understanding of mechanisms resulting in WM damage. This study aimed to compare both CBF and structural WMH penumbras in non-demented aging. Eighty-two elderly volunteers underwent 3T-MRI including fluid attenuated inversion recovery (FLAIR), pulsed arterial spin labeling and diffusion tensor imaging (DTI). A NAWM layer mask was generated for periventricular and deep WMHs. Mean CBF, DTI-fractional anisotropy (DTI-FA), DTI-mean diffusivity (DTI-MD) and FLAIR intensity for WMHs and its corresponding NAWM layer masks were computed and compared against its mean within total brain NAWM using mixed effects models. For both periventricular and deep WMHs, DTI-FA, DTI-MD and FLAIR intensity changes extended 2-9 mm surrounding WMHs (p ≤ 0.05), while CBF changes extended 13-14 mm (p ≤ 0.05). The CBF penumbra is more extensive than structural penumbras in relation to WMHs and includes WM tissue both with and without microstructural changes. Findings implicate CBF as a potential target for the prevention of both micro and macro structural WM damage.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study.

          Our aim was to identify potential risk factors for and clinical manifestations of white matter findings on cranial MRI in elderly people. Medicare eligibility lists were used to obtain a representative sample of 5888 community-dwelling people aged 65 years or older. Correlates of white matter findings were sought among 3301 participants who underwent MRI scanning and denied a history of stroke or transient ischemic attack. Participants underwent extensive standardized evaluations at baseline and on follow-up, including standard questionnaires, physical examination, multiple blood tests, electrocardiogram, pulmonary function tests, carotid sonography, and M-mode echocardiography. Neuroradiologists graded white matter findings from 0 (none) to 9 (maximal) without clinical information. Many potential risk factors were related to the white matter grade, but in the multivariate model the factors significantly (all P < .01) and independently associated with increased grade were greater age, clinically silent stroke on MRI, higher systolic blood pressure, lower forced expiratory volume in 1 second (FEV1), and income less than $50,000 per year. If excluded, FEV1 was replaced in the model by female sex, history of smoking, and history of physician-diagnosed hypertension at the baseline examination. Many clinical features were correlated with the white matter grade, especially those indicating impaired cognitive and lower extremity function. White matter findings were significantly associated with age, silent stroke, hypertension, FEV1, and income. The white matter findings may not be considered benign because they are associated with impaired cognitive and lower extremity function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study.

            White matter hyperintensities and MRI-defined brain infarcts (BIs) have individually been related to stroke, dementia, and mortality in population-based studies, mainly in older people. Their significance in middle-aged community-dwelling persons and the relative importance of these associations remain unclear. We simultaneously assessed the relation of white matter hyperintensities and BI with incident stroke, mild cognitive impairment, dementia, and mortality in a middle-aged community-based cohort. A total of 2229 Framingham Offspring Study participants aged 62+/-9 years underwent volumetric brain MRI and neuropsychological testing (1999 to 2005). Incident stroke, dementia, and mortality were prospectively ascertained and for 1694 participants in whom a second neuropsychological assessment was performed (2005 to 2007), incident mild cognitive impairment was evaluated. All outcomes were related to white matter hyperintensities volume (WMHV), age-specific extensive WMHV and BI adjusting for age and gender. Extensive WMHV and BI were associated with an increased risk of stroke (hazard ratio [HR]=2.28, 95% CI: 1.02 to 5.13; HR=2.84, 95% CI: 1.32 to 6.10). WMHV, extensive WMHV, and BI were associated with an increased risk of dementia (HR=2.22, 95% CI: 1.32 to 3.72; HR=3.97, 95% CI: 1.10 to 14.30; HR=6.12, 95% CI: 1.82 to 20.54) independently of vascular risk factors and interim stroke. WMHV and extensive WMHV were associated with incident amnestic mild cognitive impairment in participants aged > or = 60 years only (OR=2.47, 95% CI: 1.31 to 4.66 and OR=1.49, 95% CI: 1.14 to 1.97). WMHV and extensive WMHV were associated with an increased risk of death (HR=1.38, 95% CI: 1.13 to 1.69; HR=2.27, 95% CI: 1.41 to 3.65) independent of vascular risk factors and of interim stroke and dementia. In a large community-based sample of middle-aged adults, BI predicted an increased risk of stroke and dementia independent of vascular risk factors. White matter hyperintensities portended an increased risk of stroke, amnestic mild cognitive impairment, dementia, and death independent of vascular risk factors and interim vascular events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lacunar stroke is associated with diffuse blood-brain barrier dysfunction.

              Lacunar stroke is common (25% of ischemic strokes) and mostly because of an intrinsic cerebral microvascular disease of unknown cause. Although considered primarily to be an ischemic process, the vessel and tissue damage could also be explained by dysfunctional endothelium or blood-brain barrier (BBB) leak, not just ischemia. We tested for subtle generalized BBB leakiness in patients with lacunar stroke and control patients with cortical ischemic stroke. We recruited patients with lacunar and mild cortical stroke. We assessed BBB leak in gray matter, white matter, and cerebrospinal fluid, at least 1 month after stroke, using magnetic resonance imaging before and after intravenous gadolinium. We measured tissue enhancement for 30 minutes after intravenous gadolinium by two image analysis approaches (regions of interest and tissue segmentation). We compared the enhancement (leak) between lacunar and cortical patients, and associations with key variables, using general linear modeling. We recruited 51 lacunar and 46 cortical stroke patients. Signal enhancement after gadolinium was higher in lacunar than cortical stroke patients in white matter (p < 0.001) and cerebrospinal fluid (p < 0.003) by both analysis methods, independent of other variables. Signal enhancement after gadolinium was also associated with increasing age and enlarged perivascular spaces, but these did not explain the lacunar-cortical difference. Patients with lacunar stroke have subtle, diffuse BBB dysfunction in white matter. Further studies are required to determine the relative contributions of BBB dysfunction and/or ischemia to the microvascular and brain abnormalities in lacunar stroke.
                Bookmark

                Author and article information

                Journal
                J Cereb Blood Flow Metab
                J. Cereb. Blood Flow Metab
                JCB
                spjcb
                Journal of Cerebral Blood Flow & Metabolism
                SAGE Publications (Sage UK: London, England )
                0271-678X
                1559-7016
                07 June 2016
                September 2016
                : 36
                : 9
                : 1528-1536
                Affiliations
                [1 ]Department of Neurology, Oregon Health & Science University, Portland, USA
                [2 ]Department of Neurology, Veterans Affairs Medical Center, Portland, USA
                [3 ]Advanced Imaging Research Center, Oregon Health & Science University, Portland, USA
                Author notes
                [*]Nutta-on Promjunyakul, Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Email: promjuny@ 123456ohsu.edu
                Article
                10.1177_0271678X16651268
                10.1177/0271678X16651268
                5010096
                27270266
                91459cb2-c14d-4ba0-b6b6-171750abdfef
                © The Author(s) 2016

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License ( http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 15 February 2016
                : 30 March 2016
                : 27 April 2016
                Categories
                Original Articles

                Neurosciences
                arterial spin labeling,cerebral blood flow,diffusion tensor imaging,vascular cognitive impairment,magnetic resonance imaging,aging

                Comments

                Comment on this article