Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anandamide Suppresses Proliferation and Cytokine Release from Primary Human T-Lymphocytes Mainly via CB 2 Receptors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Anandamide (AEA) is an endogenous lipid mediator that exerts several effects in the brain as well as in peripheral tissues. These effects are mediated mainly by two types of cannabinoid receptors, named CB 1R and CB 2R, making AEA a prominent member of the “endocannabinoid” family. Also immune cells express CB 1 and CB 2 receptors, and possess the whole machinery responsible for endocannabinoid metabolism. Not surprisingly, evidence has been accumulated showing manifold roles of endocannabinoids in the modulation of the immune system. However, details of such a modulation have not yet been disclosed in primary human T-cells.

          Methodology/Significance

          In this investigation we used flow cytometry and ELISA tests, in order to show that AEA suppresses proliferation and release of cytokines like IL-2, TNF-α and INF-γ from activated human peripheral T-lymphocytes. However, AEA did not exert any cytotoxic effect on T-cells. The immunosuppression induced by AEA was mainly dependent on CB 2R, since it could be mimicked by the CB 2R selective agonist JWH-015, and could be blocked by the specific CB 2R antagonist SR144528. Instead the selective CB 1R agonist ACEA, or the selective CB 1R antagonist SR141716, were ineffective. Furthermore, we demonstrated an unprecedented immunosuppressive effect of AEA on IL-17 production, a typical cytokine that is released from the unique CD4+ T-cell subset T-helper 17.

          Conclusions/Significance

          Overall, our study investigates for the first time the effects of the endocannabinoid AEA on primary human T-lymphocytes, demonstrating that it is a powerful modulator of immune cell functions. In particular, not only we clarify that CB 2R mediates the immunosuppressive activity of AEA, but we are the first to describe such an immunosuppressive effect on the newly identified Th-17 cells. These findings might be of crucial importance for the rational design of new endocannabinoid-based immunotherapeutic approaches.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The roles of IL-17A in inflammatory immune responses and host defense against pathogens.

          T-helper 17 (Th17) cells are a newly discovered CD4(+) helper T-cell subset that produces interleukin-17A (IL-17A) and IL-17F. IL-17A plays important roles in allergic responses such as delayed-type hypersensitivity, contact hypersensitivity, and allergic airway inflammation. IL-17A promotes inflammation by inducing various proinflammatory cytokines and chemokines, recruiting neutrophils, enhancing antibody production, and activating T cells. IL-17A expression is also augmented in autoimmune diseases such as multiple sclerosis and rheumatoid arthritis. Using mouse models of these diseases, we found that IL-17A plays a central role in their development. IL-6 is required for the development of Th17 cells and tumor necrosis factor functions downstream of IL-17A during the effector phase. IL-1 is important both for developing Th17 cells and eliciting inflammation. Th17 cells, like Th1 and Th2 cells, are involved in host defense against infections, but the contribution of these Th subsets to defense mechanisms differs among pathogens. The roles of IL-17F remain largely unknown. In this review, we introduce how IL-17A/IL-17F are involved in inflammatory immune responses and host defense mechanisms and discuss their relationship with other cytokines in the development of inflammatory and infectious diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cannabinoid system and immune modulation.

            Studies on the effects of marijuana smoking have evolved into the discovery and description of the endocannabinoid system. To date, this system is composed of two receptors, CB1 and CB2, and endogenous ligands including anandamide, 2-arachidonoyl glycerol, and others. CB1 receptors and ligands are found in the brain as well as immune and other peripheral tissues. Conversely, CB2 receptors and ligands are found primarily in the periphery, especially in immune cells. Cannabinoid receptors are G protein-coupled receptors, and they have been linked to signaling pathways and gene activities in common with this receptor family. In addition, cannabinoids have been shown to modulate a variety of immune cell functions in humans and animals and more recently, have been shown to modulate T helper cell development, chemotaxis, and tumor development. Many of these drug effects occur through cannabinoid receptor signaling mechanisms and the modulation of cytokines and other gene products. It appears the immunocannabinoid system is involved in regulating the brain-immune axis and might be exploited in future therapies for chronic diseases and immune deficiency.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacology of cannabinoid CB1 and CB2 receptors.

              R Pertwee (1996)
              There are at least two types of cannabinoid receptors, CB1 and CB2, both coupled to G-proteins. CB1 receptors are present in the central nervous system and CB1 and CB2 receptors in certain peripheral tissues. The existence of endogenous cannabinoid receptor agonists has also been demonstrated. These discoveries have led to the development of selective cannabinoid CB1 and CB2 receptor ligands. This review focuses on the classification, binding properties, effector systems and distribution of cannabinoid receptors. It also describes the various cannabinoid receptor agonists and antagonists now available and considers the main in vivo and in vitro bioassay methods that are generally used.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2010
                14 January 2010
                : 5
                : 1
                : e8688
                Affiliations
                [1 ]European Center for Brain Research (CERC)/Santa Lucia Foundation, Rome, Italy
                [2 ]Department of Biomedical Sciences, University of Teramo, Teramo, Italy
                [3 ]Department of Neurosciences, University of Rome “Tor Vergata”, Rome, Italy
                INSERM U862, France
                Author notes

                Conceived and designed the experiments: MTC VC GC. Performed the experiments: MTC VC GC. Analyzed the data: MTC VC GC GB LB. Contributed reagents/materials/analysis tools: GB LB MM. Wrote the paper: VC GB LB MM.

                Article
                09-PONE-RA-12848R1
                10.1371/journal.pone.0008688
                2809084
                20098669
                913d6a9b-30a5-4acb-b8df-9520e98e942a
                Cencioni et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 25 August 2009
                : 22 December 2009
                Page count
                Pages: 10
                Categories
                Research Article
                Cell Biology
                Immunology/Immunomodulation
                Immunology/Leukocyte Activation

                Uncategorized
                Uncategorized

                Comments

                Comment on this article