0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatially embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain networks exist within the confines of resource limitations. As a result, a brain network must overcome the metabolic costs of growing and sustaining the network within its physical space, while simultaneously implementing its required information processing. Here, to observe the effect of these processes, we introduce the spatially embedded recurrent neural network (seRNN). seRNNs learn basic task-related inferences while existing within a three-dimensional Euclidean space, where the communication of constituent neurons is constrained by a sparse connectome. We find that seRNNs converge on structural and functional features that are also commonly found in primate cerebral cortices. Specifically, they converge on solving inferences using modular small-world networks, in which functionally similar units spatially configure themselves to utilize an energetically efficient mixed-selective code. Because these features emerge in unison, seRNNs reveal how many common structural and functional brain motifs are strongly intertwined and can be attributed to basic biological optimization processes. seRNNs incorporate biophysical constraints within a fully artificial system and can serve as a bridge between structural and functional research communities to move neuroscientific understanding forwards.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Collective dynamics of 'small-world' networks.

          Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex network measures of brain connectivity: uses and interpretations.

            Brain connectivity datasets comprise networks of brain regions connected by anatomical tracts or by functional associations. Complex network analysis-a new multidisciplinary approach to the study of complex systems-aims to characterize these brain networks with a small number of neurobiologically meaningful and easily computable measures. In this article, we discuss construction of brain networks from connectivity data and describe the most commonly used network measures of structural and functional connectivity. We describe measures that variously detect functional integration and segregation, quantify centrality of individual brain regions or pathways, characterize patterns of local anatomical circuitry, and test resilience of networks to insult. We discuss the issues surrounding comparison of structural and functional network connectivity, as well as comparison of networks across subjects. Finally, we describe a Matlab toolbox (http://www.brain-connectivity-toolbox.net) accompanying this article and containing a collection of complex network measures and large-scale neuroanatomical connectivity datasets. Copyright (c) 2009 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural and functional brain networks: from connections to cognition.

              How rich functionality emerges from the invariant structural architecture of the brain remains a major mystery in neuroscience. Recent applications of network theory and theoretical neuroscience to large-scale brain networks have started to dissolve this mystery. Network analyses suggest that hierarchical modular brain networks are particularly suited to facilitate local (segregated) neuronal operations and the global integration of segregated functions. Although functional networks are constrained by structural connections, context-sensitive integration during cognition tasks necessarily entails a divergence between structural and functional networks. This degenerate (many-to-one) function-structure mapping is crucial for understanding the nature of brain networks. The emergence of dynamic functional networks from static structural connections calls for a formal (computational) approach to neuronal information processing that may resolve this dialectic between structure and function.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Machine Intelligence
                Nat Mach Intell
                Springer Science and Business Media LLC
                2522-5839
                November 20 2023
                Article
                10.1038/s42256-023-00748-9
                9132a5e4-2de3-4fd0-a5e2-37d3d0b3d4a1
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article