2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Correlation between Metformin Use and Incident Dementia in Patients with New-Onset Diabetes Mellitus: A Population-Based Study

      , , , , , ,
      Journal of Personalized Medicine
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The evidence of metformin’s effect on dementia is conflicting. This study investigates the association between metformin use and the risk of dementia among patients with diabetes mellitus (DM). This study included patients with new-onset DM between 2002 and 2013. We divided the patients into patients who used metformin and patients who did not. Two models were used to assess metformin use: the cumulative defined daily dose (cDDD) of metformin use and the intensity of metformin use. This study with 3-year and 5-year follow-ups investigated the risk of dementia among patients with DM who used metformin. At the 3-year follow-up, patients who received cDDD < 300 had an odds ratio (OR) of developing dementia of 0.92 (95% confidence interval [CI] = 0.89–0.96); patients who used metformin at intensities <10 and 10–25 DDD/month had ORs of 0.92 (95% CI: 0.87–0.97) and 0.92 (95% CI: 0.85–1.00), respectively. Metformin use at cDDD 300–500 (OR = 0.80, 95% CI = 0.56–1.15) or >500 (OR = 1.48, 95% CI = 0.48–4.60) or at an intensity >25 DDD/month (OR = 0.84, 95% CI = 0.60–1.18) were not associated with an incident of dementia. There were similar results at the 5-year follow-up. Patients with a low intensity of metformin use had a lower risk of dementia. However, higher doses of metformin with higher intensity exhibited no protective role in dementia. Prospective clinical trials are warranted to evaluate the actual underlying mechanisms between metformin dosage and the risk of dementia.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Taiwan’s National Health Insurance Research Database: past and future

          Abstract Taiwan’s National Health Insurance Research Database (NHIRD) exemplifies a population-level data source for generating real-world evidence to support clinical decisions and health care policy-making. Like with all claims databases, there have been some validity concerns of studies using the NHIRD, such as the accuracy of diagnosis codes and issues around unmeasured confounders. Endeavors to validate diagnosed codes or to develop methodologic approaches to address unmeasured confounders have largely increased the reliability of NHIRD studies. Recently, Taiwan’s Ministry of Health and Welfare (MOHW) established a Health and Welfare Data Center (HWDC), a data repository site that centralizes the NHIRD and about 70 other health-related databases for data management and analyses. To strengthen the protection of data privacy, investigators are required to conduct on-site analysis at an HWDC through remote connection to MOHW servers. Although the tight regulation of this on-site analysis has led to inconvenience for analysts and has increased time and costs required for research, the HWDC has created opportunities for enriched dimensions of study by linking across the NHIRD and other databases. In the near future, researchers will have greater opportunity to distill knowledge from the NHIRD linked to hospital-based electronic medical records databases containing unstructured patient-level information by using artificial intelligence techniques, including machine learning and natural language processes. We believe that NHIRD with multiple data sources could represent a powerful research engine with enriched dimensions and could serve as a guiding light for real-world evidence-based medicine in Taiwan.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline.

            While a potential causal factor in Alzheimer's disease (AD), brain insulin resistance has not been demonstrated directly in that disorder. We provide such a demonstration here by showing that the hippocampal formation (HF) and, to a lesser degree, the cerebellar cortex in AD cases without diabetes exhibit markedly reduced responses to insulin signaling in the IR→IRS-1→PI3K signaling pathway with greatly reduced responses to IGF-1 in the IGF-1R→IRS-2→PI3K signaling pathway. Reduced insulin responses were maximal at the level of IRS-1 and were consistently associated with basal elevations in IRS-1 phosphorylated at serine 616 (IRS-1 pS⁶¹⁶) and IRS-1 pS⁶³⁶/⁶³⁹. In the HF, these candidate biomarkers of brain insulin resistance increased commonly and progressively from normal cases to mild cognitively impaired cases to AD cases regardless of diabetes or APOE ε4 status. Levels of IRS-1 pS⁶¹⁶ and IRS-1 pS⁶³⁶/⁶³⁹ and their activated kinases correlated positively with those of oligomeric Aβ plaques and were negatively associated with episodic and working memory, even after adjusting for Aβ plaques, neurofibrillary tangles, and APOE ε4. Brain insulin resistance thus appears to be an early and common feature of AD, a phenomenon accompanied by IGF-1 resistance and closely associated with IRS-1 dysfunction potentially triggered by Aβ oligomers and yet promoting cognitive decline independent of classic AD pathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease- associated Aβ oligomers.

              Defective brain insulin signaling has been suggested to contribute to the cognitive deficits in patients with Alzheimer's disease (AD). Although a connection between AD and diabetes has been suggested, a major unknown is the mechanism(s) by which insulin resistance in the brain arises in individuals with AD. Here, we show that serine phosphorylation of IRS-1 (IRS-1pSer) is common to both diseases. Brain tissue from humans with AD had elevated levels of IRS-1pSer and activated JNK, analogous to what occurs in peripheral tissue in patients with diabetes. We found that amyloid-β peptide (Aβ) oligomers, synaptotoxins that accumulate in the brains of AD patients, activated the JNK/TNF-α pathway, induced IRS-1 phosphorylation at multiple serine residues, and inhibited physiological IRS-1pTyr in mature cultured hippocampal neurons. Impaired IRS-1 signaling was also present in the hippocampi of Tg mice with a brain condition that models AD. Importantly, intracerebroventricular injection of Aβ oligomers triggered hippocampal IRS-1pSer and JNK activation in cynomolgus monkeys. The oligomer-induced neuronal pathologies observed in vitro, including impaired axonal transport, were prevented by exposure to exendin-4 (exenatide), an anti-diabetes agent. In Tg mice, exendin-4 decreased levels of hippocampal IRS-1pSer and activated JNK and improved behavioral measures of cognition. By establishing molecular links between the dysregulated insulin signaling in AD and diabetes, our results open avenues for the investigation of new therapeutics in AD.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JPMOB3
                Journal of Personalized Medicine
                JPM
                MDPI AG
                2075-4426
                May 2023
                April 26 2023
                : 13
                : 5
                : 738
                Article
                10.3390/jpm13050738
                37240908
                9104f343-2326-423e-bdf4-cf1bc8fae817
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article