9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combining next-generation indoor residual spraying and drug-based malaria control strategies: observational evidence of a combined effect in Mali

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ségou Region in central Mali is an area of high malaria burden with seasonal transmission. The region reports high access to and use of long-lasting insecticidal nets (LLINs), though the principal vector, Anopheles gambiae, is resistant to pyrethroids. From 2011 until 2016, several high-burden districts of Ségou also received indoor residual spraying (IRS), though in 2014 concerns about pyrethroid resistance prompted a shift in IRS products to a micro-encapsulated formulation of the organophosphate insecticide pirimiphos-methyl. Also in 2014, the region expanded a pilot programme to provide seasonal malaria chemoprevention (SMC) to children aged 3–59 months in two districts. The timing of these decisions presented an opportunity to estimate the impact of both interventions, deployed individually and in combination, using quality-assured passive surveillance data.

          Methods

          A non-randomized, quasi-experimental time series approach was used to analyse monthly trends in malaria case incidence at the district level. Districts were stratified by intervention status: an SMC district, an IRS district, an IRS + SMC district, and control districts that received neither IRS nor SMC in 2014. The numbers of positive rapid diagnostic test (RDT +) results reported at community health facilities were aggregated and epidemiological curves showing the incidence of RDT-confirmed malaria cases per 10,000 person-months were plotted for the total all-ages and for the under 5 year old (u5) population. The cumulative incidence of RDT + malaria cases observed from September 2014 to February 2015 was calculated in each intervention district and compared to the cumulative incidence reported from the same period in the control districts.

          Results

          Cumulative peak-transmission all-ages incidence was lower in each of the intervention districts compared to the control districts: 16% lower in the SMC district; 28% lower in the IRS district; and 39% lower in the IRS + SMC district. The same trends were observed in the u5 population: incidence was 15% lower with SMC, 48% lower with IRS, and 53% lower with IRS + SMC. The SMC-only intervention had a more moderate effect on incidence reduction initially, which increased over time. The IRS-only intervention had a rapid, comparatively large impact initially that waned over time. The impact of the combined interventions was both rapid and longer lasting.

          Conclusion

          Evaluating the impact of IRS with an organophosphate and SMC on reducing incidence rates of passive RDT-confirmed malaria cases in Ségou Region in 2014 suggests that combining the interventions had a greater effect than either intervention used individually in this high-burden region of central Mali with pyrethroid-resistant vectors and high rates of household access to LLINs.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying.

          Indoor residual house-spraying (IRS) mainly with dichlorodiphenyltrichloroethane (DDT) was the principal method by which malaria was eradicated or greatly reduced in many countries in the world between the 1940s and 1960s. In sub-Saharan Africa early malarial eradication pilot projects also showed that malaria is highly responsive to vector control by IRS but transmission could not be interrupted in the endemic tropical and lowland areas. As a result IRS was not taken to scale in most endemic areas of the continent with the exception of southern Africa and some island countries such as Reunion, Mayotte, Zanzibar, Cape Verde and Sao Tome. In southern Africa large-scale malarial control operations based on IRS with DDT and benzene hexachloride (BHC) were initiated in a number of countries to varying degrees. The objective of this review was to investigate the malarial situation before and after the introduction of indoor residual insecticide spraying in South Africa, Swaziland, Botswana, Namibia, Zimbabwe and Mozambique using historical malarial data and related information collected from National Malaria Control Programmes, national archives and libraries, as well as academic institutions in the respective countries. Immediately after the inception of IRS with insecticides, dramatic reductions in malaria and its vectors were recorded. Countries that developed National Malaria Control Programmes during this phase and had built up human and organizational resources made significant advances towards malarial control. Malaria was reduced from hyper- to meso-endemicity and from meso- to hypo-endemicity and in certain instances to complete eradication. Data are presented on the effectiveness of IRS as a malarial control tool in six southern African countries. Recent trends in and challenges to malarial control in the region are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Review of Mass Drug Administration for Malaria and Its Operational Challenges

            Mass drug administration (MDA) was a component of many malaria programs during the eradication era, but later was seldomly deployed due to concerns regarding efficacy and feasibility and fear of accelerating drug resistance. Recently, however, there has been renewed interest in the role of MDA as an elimination tool. Following a 2013 Cochrane Review that focused on the quantitative effects of malaria MDA, we have conducted a systematic, qualitative review of published, unpublished, and gray literature documenting past MDA experiences. We have also consulted with field experts, using their historical experience to provide an informed, contextual perspective on the role of MDA in malaria elimination. Substantial knowledge gaps remain and more research is necessary, particularly on optimal target population size, methods to improve coverage, and primaquine safety. Despite these gaps, MDA has been used successfully to control and eliminate Plasmodium falciparum and P. vivax malaria in the past, and should be considered as part of a comprehensive malaria elimination strategy in specific settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Effectiveness of Seasonal Malaria Chemoprevention in Children under Ten Years of Age in Senegal: A Stepped-Wedge Cluster-Randomised Trial

              Background Seasonal Malaria Chemoprevention (SMC) with sulfadoxine-pyrimethamine (SP) plus amodiaquine (AQ), given each month during the transmission season, is recommended for children living in areas of the Sahel where malaria transmission is highly seasonal. The recommendation for SMC is currently limited to children under five years of age, but, in many areas of seasonal transmission, the burden in older children may justify extending this age limit. This study was done to determine the effectiveness of SMC in Senegalese children up to ten years of age. Methods and Findings SMC was introduced into three districts over three years in central Senegal using a stepped-wedge cluster-randomised design. A census of the population was undertaken and a surveillance system was established to record all deaths and to record all cases of malaria seen at health facilities. A pharmacovigilance system was put in place to detect adverse drug reactions. Fifty-four health posts were randomised. Nine started implementation of SMC in 2008, 18 in 2009, and a further 18 in 2010, with 9 remaining as controls. In the first year of implementation, SMC was delivered to children aged 3–59 months; the age range was then extended for the latter two years of the study to include children up to 10 years of age. Cluster sample surveys at the end of each transmission season were done to measure coverage of SMC and the prevalence of parasitaemia and anaemia, to monitor molecular markers of drug resistance, and to measure insecticide-treated net (ITN) use. Entomological monitoring and assessment of costs of delivery in each health post and of community attitudes to SMC were also undertaken. About 780,000 treatments were administered over three years. Coverage exceeded 80% each month. Mortality, the primary endpoint, was similar in SMC and control areas (4.6 and 4.5 per 1000 respectively in children under 5 years and 1.3 and 1.2 per 1000 in children 5-9 years of age; the overall mortality rate ratio [SMC: no SMC] was 0.90, 95% CI 0.68–1.2, p = 0.496). A reduction of 60% (95% CI 54%–64%, p < 0.001) in the incidence of malaria cases confirmed by a rapid diagnostic test (RDT) and a reduction of 69% (95% CI 65%–72%, p < 0.001) in the number of treatments for malaria (confirmed and unconfirmed) was observed in children. In areas where SMC was implemented, incidence of confirmed malaria in adults and in children too old to receive SMC was reduced by 26% (95% CI 18%–33%, p < 0.001) and the total number of treatments for malaria (confirmed and unconfirmed) in these older age groups was reduced by 29% (95% CI 21%–35%, p < 0.001). One hundred and twenty-three children were admitted to hospital with a diagnosis of severe malaria, with 64 in control areas and 59 in SMC areas, showing a reduction in the incidence rate of severe disease of 45% (95% CI 5%–68%, p = 0.031). Estimates of the reduction in the prevalence of parasitaemia at the end of the transmission season in SMC areas were 68% (95% CI 35%–85%) p = 0.002 in 2008, 84% (95% CI 58%–94%, p < 0.001) in 2009, and 30% (95% CI -130%–79%, p = 0.56) in 2010. SMC was well tolerated with no serious adverse reactions attributable to SMC drugs. Vomiting was the most commonly reported mild adverse event but was reported in less than 1% of treatments. The average cost of delivery was US$0.50 per child per month, but varied widely depending on the size of the health post. Limitations included the low rate of mortality, which limited our ability to detect an effect on this endpoint. Conclusions SMC substantially reduced the incidence of outpatient cases of malaria and of severe malaria in children, but no difference in all-cause mortality was observed. Introduction of SMC was associated with an overall reduction in malaria incidence in untreated age groups. In many areas of Africa with seasonal malaria, there is a substantial burden in older children that could be prevented by SMC. SMC in older children is well tolerated and effective and can contribute to reducing malaria transmission. Trial Registration ClinicalTrials.gov NCT00712374
                Bookmark

                Author and article information

                Contributors
                jwagman@path.org
                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                15 August 2020
                15 August 2020
                2020
                : 19
                : 293
                Affiliations
                [1 ]GRID grid.416809.2, ISNI 0000 0004 0423 0663, PATH, ; Washington, DC USA
                [2 ]Programme National de Lutte contre le Paludisme, Bamako, Mali
                [3 ]GRID grid.62562.35, ISNI 0000000100301493, RTI International, ; Washington, DC USA
                [4 ]PMI, USAID, Bamako, Mali
                [5 ]Abt Associates, Bamako, Mali
                [6 ]MEASURE Evaluation, Bamako, Mali
                [7 ]IVCC, Accra, Ghana
                [8 ]GRID grid.431708.9, ISNI 0000 0004 0446 6801, IVCC, ; Washington, DC USA
                [9 ]GRID grid.415269.d, ISNI 0000 0000 8940 7771, PATH, ; Seattle, WA USA
                Author information
                http://orcid.org/0000-0002-5178-3098
                Article
                3361
                10.1186/s12936-020-03361-y
                7429948
                32799873
                90ffa21b-aa16-4664-8e80-4bb40218e80d
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 April 2020
                : 5 August 2020
                Funding
                Funded by: Unitaid
                Award ID: Market intervention to accelerate uptake of new vector control tools
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Infectious disease & Microbiology
                indoor residual spraying,observational analysis,seasonal malaria chemoprevention,combined malaria control strategies

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content423

                Cited by7

                Most referenced authors298