4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Pathogenicity and Synergistic Action of Th1 and Th17 Cells in Inflammatory Bowel Diseases

      , , , , , ,
      Inflammatory Bowel Diseases
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn’s disease, are characterized by chronic idiopathic inflammation of gastrointestinal tract. Although the pathogenesis of IBD remains unknown, intestinal immune dysfunction has been considered as the core pathogenesis. In the intestinal immune system, T helper 1 (Th1) and Th17 cells are indispensable for intestine homeostasis via preventing pathogenic bacteria invasion, regulating metabolism and functions of intestinal epithelial cells (IECs), and promoting IEC self-renewal. However, during the development of IBD, Th1 and Th17 cells acquire the pathogenicity and change from the maintainer of intestinal homeostasis to the destroyer of intestinal mucosa. Because of coexpressing interferon-γ and interleukin-17A, Th17 cells with pathogenicity are named as pathogenic Th17 cells. In disease states, Th1 cells impair IEC programs by inducing IEC apoptosis, recruiting immune cells, promoting adhesion molecules expression of IECs, and differentiating to epithelial cell adhesion molecule–specific interferon γ–positive Th1 cells. Pathogenic Th17 cells induce IEC injury by triggering IBD susceptibility genes expression of IECs and specifically killing IECs. In addition, Th1 and pathogenic Th17 cells could cooperate to induce colitis. The evidences from IBD patients and animal models demonstrate that synergistic action of Th1 and pathogenic Th17 cells occurs in the diseases development and aggravates the mucosal inflammation. In this review, we focused on Th1 and Th17 cell programs in homeostasis and intestine inflammation and specifically discussed the impact of Th1 and Th17 cell pathogenicity and their synergistic action on the onset and the development of IBD. We hoped to provide some clues for treating IBD.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the Warburg effect: the metabolic requirements of cell proliferation.

          In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

            A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies.

              Inflammatory bowel disease is a global disease in the 21st century. We aimed to assess the changing incidence and prevalence of inflammatory bowel disease around the world.
                Bookmark

                Author and article information

                Contributors
                Journal
                Inflammatory Bowel Diseases
                Oxford University Press (OUP)
                1078-0998
                1536-4844
                September 27 2022
                September 27 2022
                Article
                10.1093/ibd/izac199
                36166586
                90f95bc0-7703-497a-8bc0-962b6534b212
                © 2022

                https://academic.oup.com/pages/standard-publication-reuse-rights

                History

                Comments

                Comment on this article