4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insights into the Binding Recognition and Susceptibility of Tofacitinib toward Janus Kinases

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Janus kinases (JAKs) are enzymes involved in signaling pathways that affect hematopoiesis and immune cell functions. JAK1, JAK2, and JAK3 play different roles in numerous diseases of the immune system and have also been considered as potential targets for cancer therapy. In the present study, the susceptibility of the oral JAK inhibitor tofacitinib against these three JAKs was elucidated using the 500-ns molecular dynamics (MD) simulations and free energy calculations based on MM-PB(GB)SA, QM/MM-GBSA (PM3 and SCC-DFTB), and SIE methods. The obtained results revealed that tofacitinib could interact with all JAKs at the ATP-binding site via electrostatic attraction, hydrogen bond formation, and in particular van der Waals interaction. The conserved glutamate and leucine residues (E957 and L959 of JAK1, E930 and L932 of JAK2, and E903 and L905 of JAK3) located in the hinge region stabilized tofacitinib binding through strongly formed hydrogen bonds. Complexation with the incoming tofacitinib led to a closed conformation of the ATP-binding site and a decreased protein fluctuation at the glycine loop of the JAK protein. The binding affinities of tofacitinib/JAKs were ranked in the order of JAK3 > JAK2 ∼ JAK1, which are in line with the reported experimental data.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.

          In this study, we have revised the rules and parameters for one of the most commonly used empirical pKa predictors, PROPKA, based on better physical description of the desolvation and dielectric response for the protein. We have introduced a new and consistent approach to interpolate the description between the previously distinct classifications into internal and surface residues, which otherwise is found to give rise to an erratic and discontinuous behavior. Since the goal of this study is to lay out the framework and validate the concept, it focuses on Asp and Glu residues where the protein pKa values and structures are assumed to be more reliable. The new and improved implementation is evaluated and discussed; it is found to agree better with experiment than the previous implementation (in parentheses): rmsd = 0.79 (0.91) for Asp and Glu, 0.75 (0.97) for Tyr, 0.65 (0.72) for Lys, and 1.00 (1.37) for His residues. The most significant advance, however, is in reducing the number of outliers and removing unreasonable sensitivity to small structural changes that arise from classifying residues as either internal or surface.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis

            Background The Janus kinase (JAK) family of tyrosine kinases includes JAK1, JAK2, JAK3 and TYK2, and is required for signaling through Type I and Type II cytokine receptors. CP-690,550 is a potent and selective JAK inhibitor currently in clinical trials for rheumatoid arthritis (RA) and other autoimmune disease indications. In RA trials, dose-dependent decreases in neutrophil counts (PBNC) were observed with CP-690,550 treatment. These studies were undertaken to better understand the relationship between JAK selectivity and PBNC decreases observed with CP-690,550 treatment. Methods Potency and selectivity of CP-690,550 for mouse, rat and human JAKs was evaluated in a panel of in vitro assays. The effect of CP-690,550 on granulopoiesis from progenitor cells was also assessed in vitro using colony forming assays. In vivo the potency of orally administered CP-690,550 on arthritis (paw edema), plasma cytokines, PBNC and bone marrow differentials were evaluated in the rat adjuvant-induced arthritis (AIA) model. Results CP-690,550 potently inhibited signaling through JAK1 and JAK3 with 5-100 fold selectivity over JAK2 in cellular assays, despite inhibiting all four JAK isoforms with nM potency in in vitro enzyme assays. Dose-dependent inhibition of paw edema was observed in vivo with CP-690,550 treatment. Plasma cytokines (IL-6 and IL-17), PBNC, and bone marrow myeloid progenitor cells were elevated in the context of AIA disease. At efficacious exposures, CP-690,550 returned all of these parameters to pre-disease levels. The plasma concentration of CP-690,550 at efficacious doses was above the in vitro whole blood IC50 of JAK1 and JAK3 inhibition, but not that of JAK2. Conclusion Results from this investigation suggest that CP-690,550 is a potent inhibitor of JAK1 and JAK3 with potentially reduced cellular potency for JAK2. In rat AIA, as in the case of human RA, PBNC were decreased at efficacious exposures of CP-690,550. Inflammatory end points were similarly reduced, as judged by attenuation of paw edema and cytokines IL-6 and IL-17. Plasma concentration at these exposures was consistent with inhibition of JAK1 and JAK3 but not JAK2. Decreases in PBNC following CP-690,550 treatment may thus be related to attenuation of inflammation and are likely not due to suppression of granulopoiesis through JAK2 inhibition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor.

              Because of its requirement for signaling by multiple cytokines, Janus kinase 3 (JAK3) is an excellent target for clinical immunosuppression. We report the development of a specific, orally active inhibitor of JAK3, CP-690,550, that significantly prolonged survival in a murine model of heart transplantation and in cynomolgus monkeys receiving kidney transplants. CP-690,550 treatment was not associated with hypertension, hyperlipidemia, or lymphoproliferative disease. On the basis of these preclinical results, we believe JAK3 blockade by CP-690,550 has potential for therapeutically desirable immunosuppression in human organ transplantation and in other clinical settings.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                02 January 2020
                14 January 2020
                : 5
                : 1
                : 369-377
                Affiliations
                [1] Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science and Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University , Bangkok 10330, Thailand
                [§ ]Department of Biochemistry, Faculty of Science, Kasetsart University , Bangkok 10900, Thailand
                []Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi , Bangkok 10140, Thailand
                [4] Department of Pharmaceutical Chemistry, Faculty of Life Sciences and #Institute of Theoretical Chemistry, University of Vienna , Vienna 1090, Austria
                Author notes
                [* ]E-mail: t.rungrotmongkol@ 123456gmail.com , thanyada.r@ 123456chula.ac.th . Tel: +66 2 2185426. Fax: +66 22185418.
                Article
                10.1021/acsomega.9b02800
                6964278
                31956784
                90e1f3f4-43a4-4ab0-a641-4df93e8608d8
                Copyright © 2020 American Chemical Society

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 29 August 2019
                : 04 December 2019
                Categories
                Article
                Custom metadata
                ao9b02800
                ao9b02800

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content866

                Cited by21

                Most referenced authors2,459