49
views
0
recommends
+1 Recommend
0 collections
    20
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Brucella 'HOOF-Prints': strain typing by multi-locus analysis of variable number tandem repeats (VNTRs)

      research-article
      1 , , 2 , 1
      BMC Microbiology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Currently, there are very few tools available for subtyping Brucella isolates for epidemiological trace-back. Subtyping is difficult because of the genetic homogeneity within the genus. Sequencing of the genomes from three Brucella species has facilitated the search for DNA sequence variability. Recently, hypervariability among short tandem repeat sequences has been exploited for strain-typing of several bacterial pathogens.

          Results

          An eight-base pair tandem repeat sequence was discovered in nine genomic loci of the B. abortus genome. Eight loci were hypervariable among the three Brucella species. A PCR-based method was developed to identify the number of repeat units (alleles) at each locus, generating strain-specific fingerprints. None of the loci exhibited species- or biovar-specific alleles. Sometimes, a species or biovar contained a specific allele at one or more loci, but the allele also occurred in other species or biovars. The technique successfully differentiated the type strains for all Brucella species and biovars, among unrelated B. abortus biovar 1 field isolates in cattle, and among B. abortus strains isolated from bison and elk. Isolates from the same herd or from short-term in vitro passage exhibited little or no variability in fingerprint pattern. Sometimes, isolates from an animal would have multiple alleles at a locus, possibly from mixed infections in enzootic areas, residual disease from incomplete depopulation of an infected herd or molecular evolution within the strain. Therefore, a mixed population or a pool of colonies from each animal and/or tissue was tested.

          Conclusion

          This paper describes a new method for fingerprinting Brucella isolates based on multi-locus characterization of a variable number, eight-base pair, tandem repeat. We have named this technique "HOOF-Prints" for Hypervariable Octameric Oligonucleotide Finger-Prints. The technique is highly discriminatory among Brucella species, among previously characterized Brucella strains, and among unrelated field isolates that could not be differentiated by classical methods. The method is rapid and the results are reproducible. HOOF-Printing will be most useful as a follow-up test after identification by established methods since we did not find species-specific or biovar-specific alleles. Nonetheless, this technology provides a significant advancement in brucellosis epidemiology, and consequently, will help to eliminate this disease worldwide.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR.

            Several PCR assays which identify the genus Brucella but do not discriminate among species have been reported. We describe a PCR assay that comprises five oligonucleotide primers which can identify selected biovars of four species of Brucella. Individual biovars within a species are not differentiated. The assay can identify three biovars (1, 2, and 4) of B. abortus, all three biovars of B. melitensis, biovar 1 of B. suis, and all B. ovis biovars. These biovars include all of the Brucella species typically isolated from cattle in the United States, a goal of the present research. The assay exploits the polymorphism arising from species-specific localization of the genetic element IS711 in the Brucella chromosome. Identity is determined by the size(s) of the product(s) amplified from primers hybridizing at various distances from the element. The performance of the assay with U.S. field isolates was highly effective. When 107 field isolates were screened by the described method, there was 100% agreement with the identifications made by conventional methods. Six closely related bacteria (Agrobacterium radiobacter, Agrobacterium rhizogenes, Ochrobactrum anthropi, Rhizobium leguminosarum, Rhizobium meliloti, and Rhodospirillum rubrum) and two control bacteria (Bordetella bronchiseptica and Escherichia coli) tested negative by the assay.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis.

              Bacillus anthracis is one of the most genetically homogeneous pathogens described, making strain discrimination particularly difficult. In this paper, we present a novel molecular typing system based on rapidly evolving variable-number tandem repeat (VNTR) loci. Multiple-locus VNTR analysis (MLVA) uses the combined power of multiple alleles at several marker loci. In our system, fluorescently labeled PCR primers are used to produce PCR amplification products from eight VNTR regions in the B. anthracis genome. These are detected and their sizes are determined using an ABI377 automated DNA sequencer. Five of these eight loci were discovered by sequence characterization of molecular markers (vrrC(1), vrrC(2), vrrB(1), vrrB(2), and CG3), two were discovered by searching complete plasmid nucleotide sequences (pXO1-aat and pXO2-at), and one was known previously (vrrA). MLVA characterization of 426 B. anthracis isolates identified 89 distinct genotypes. VNTR markers frequently identified multiple alleles (from two to nine), with Nei's diversity values between 0.3 and 0.8. Unweighted pair-group method arithmetic average cluster analysis identified six genetically distinct groups that appear to be derived from clones. Some of these clones show worldwide distribution, while others are restricted to particular geographic regions. Human commerce doubtlessly has contributed to the dispersal of particular clones in ancient and modern times.
                Bookmark

                Author and article information

                Journal
                BMC Microbiol
                BMC Microbiology
                BioMed Central (London )
                1471-2180
                2003
                11 July 2003
                : 3
                : 15
                Affiliations
                [1 ]United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, 2300 Dayton Rd, Ames, IA, 50010, USA
                [2 ]United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, National Veterinary Services Laboratories, 1800 Dayton Rd, Ames, IA, 50010, USA
                Article
                1471-2180-3-15
                10.1186/1471-2180-3-15
                183870
                12857351
                90d504a6-701b-4104-bc3d-3384044d698c
                Copyright © 2003 Bricker et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                History
                : 11 April 2003
                : 11 July 2003
                Categories
                Research Article

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article