Accurate and prompt detection of cracked teeth plays a critical role for human oral health. The aim of this paper is to evaluate the performance of a tooth crack segmentation model (namely, FDB-DeepLabv3+) on optical microscopic images.
The FDB-DeepLabv3+ model proposed here improves feature learning by replacing the backbone with ResNet50. Feature pyramid network (FPN) is introduced to fuse muti-level features. Densely linked atrous spatial pyramid pooling (Dense ASPP) is applied to achieve denser pixel sampling and wider receptive field. Bottleneck attention module (BAM) is embedded to enhance local feature extraction.
Through testing on a self-made hidden cracked tooth dataset, the proposed method outperforms four classical networks (FCN, U-Net, SegNet, DeepLabv3+) on segmentation results in terms of mean pixel accuracy (MPA) and mean intersection over union (MIoU). The network achieves an increase of 11.41% in MPA and 12.14% in MIoU compared to DeepLabv3+. Ablation experiments shows that all the modifications are beneficial.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.