24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Superhard Monoclinic Polymorph of Carbon

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report a novel phase of carbon possessing a monoclinic C2/m structure (8 atoms/cell) identified using an ab initio evolutionary structural search. This polymorph, which we call M-carbon, is related to the (2x1) reconstruction of the (111) surface of diamond and can also be viewed as a distorted (through sliding and buckling of the sheets) form of graphite. It is stable over cold-compressed graphite above 13.4 GPa. The simulated x-ray diffraction pattern and near K-edge spectroscopy are in satisfactory agreement with the experimental data [W. L. Mao, Science 302, 425 (2003)10.1126/science.1089713] on overcompressed graphite. The hardness and bulk modulus of this new carbon polymorph are calculated to be 83.1 and 431.2 GPa, respectively, which are comparable to those of diamond.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Projector augmented-wave method

            P. Blöchl (1994)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              First-principles simulation: ideas, illustrations and the CASTEP code

                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                April 2009
                April 29 2009
                : 102
                : 17
                Article
                10.1103/PhysRevLett.102.175506
                19518796
                90c60795-af3d-487b-94d1-2b5e7fb33169
                © 2009

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content1,724

                Cited by103

                Most referenced authors448