72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Detection of Helminthosporium Leaf Blotch Disease Based on UAV Imagery

      , , , , , , , ,
      Applied Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Helminthosporium leaf blotch (HLB) is a serious disease of wheat causing yield reduction globally. Usually, HLB disease is controlled by uniform chemical spraying, which is adopted by most farmers. However, increased use of chemical controls have caused agronomic and environmental problems. To solve these problems, an accurate spraying system must be applied. In this case, the disease detection over the whole field can provide decision support information for the spraying machines. The objective of this paper is to evaluate the potential of unmanned aerial vehicle (UAV) remote sensing for HLB detection. In this work, the UAV imagery acquisition and ground investigation were conducted in Central China on April 22th, 2017. Four disease categories (normal, light, medium, and heavy) were established based on different severity degrees. A convolutional neural network (CNN) was proposed for HLB disease classification. The experiments on data preprocessing, classification, and hyper-parameters tuning were conducted. The overall accuracy and standard error of the CNN method was 91.43% and 0.83%, which outperformed other methods in terms of accuracy and stabilization. Especially for the detection of the diseased samples, the CNN method significantly outperformed others. Experimental results showed that the HLB infected areas and healthy areas can be precisely discriminated based on UAV remote sensing data, indicating that UAV remote sensing can be proposed as an efficient tool for HLB disease detection.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            ImageNet classification with deep convolutional neural networks

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A comparative study of texture measures with classification based on featured distributions

                Bookmark

                Author and article information

                Contributors
                Journal
                ASPCC7
                Applied Sciences
                Applied Sciences
                MDPI AG
                2076-3417
                February 2019
                February 08 2019
                : 9
                : 3
                : 558
                Article
                10.3390/app9030558
                90acf756-e45f-4233-a210-2b1d95050d6b
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article