22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of hormone replacement therapy and risk of venous thromboembolism: nested case-control studies using the QResearch and CPRD databases

      research-article
      1 , , 1 , 1
      The BMJ
      BMJ Publishing Group Ltd.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To assess the association between risk of venous thromboembolism and use of different types of hormone replacement therapy.

          Design

          Two nested case-control studies.

          Setting

          UK general practices contributing to the QResearch or Clinical Practice Research Datalink (CPRD) databases, and linked to hospital, mortality, and social deprivation data.

          Participants

          80 396 women aged 40-79 with a primary diagnosis of venous thromboembolism between 1998 and 2017, matched by age, general practice, and index date to 391 494 female controls.

          Main outcome measures

          Venous thromboembolism recorded on general practice, mortality, or hospital records. Odds ratios were adjusted for demographics, smoking status, alcohol consumption, comorbidities, recent medical events, and other prescribed drugs.

          Results

          Overall, 5795 (7.2%) women who had venous thromboembolism and 21 670 (5.5%) controls had been exposed to hormone replacement therapy within 90 days before the index date. Of these two groups, 4915 (85%)and 16 938 (78%) women used oral therapy, respectively, which was associated with a significantly increased risk of venous thromboembolism compared with no exposure (adjusted odds ratio 1.58, 95% confidence interval 1.52 to 1.64), for both oestrogen only preparations (1.40, 1.32 to 1.48) and combined preparations (1.73, 1.65 to 1.81). Estradiolhad a lower risk than conjugated equine oestrogen for oestrogen only preparations (0.85, 0.76 to 0.95) and combined preparations (0.83, 0.76 to 0.91). Compared with no exposure, conjugated equine oestrogen with medroxyprogesterone acetate had the highest risk (2.10, 1.92 to 2.31), and estradiol with dydrogesterone had the lowest risk (1.18, 0.98 to 1.42). Transdermal preparations were not associated with risk of venous thromboembolism, which was consistent for different regimens (overall adjusted odds ratio 0.93, 95% confidence interval 0.87 to 1.01).

          Conclusions

          In the present study, transdermal treatment was the safest type of hormone replacement therapy when risk of venous thromboembolism was assessed. Transdermal treatment appears to be underused, with the overwhelming preference still for oral preparations.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Hormone therapy and venous thromboembolism among postmenopausal women: impact of the route of estrogen administration and progestogens: the ESTHER study.

          Oral estrogen therapy increases the risk of venous thromboembolism (VTE) in postmenopausal women. Transdermal estrogen may be safer. However, currently available data have limited the ability to investigate the wide variety of types of progestogen. We performed a multicenter case-control study of VTE among postmenopausal women 45 to 70 years of age between 1999 and 2005 in France. We recruited 271 consecutive cases with a first documented episode of idiopathic VTE (208 hospital cases, 63 outpatient cases) and 610 controls (426 hospital controls, 184 community controls) matched for center, age, and admission date. After adjustment for potential confounding factors, odds ratios (ORs) for VTE in current users of oral and transdermal estrogen compared with nonusers were 4.2 (95% CI, 1.5 to 11.6) and 0.9 (95% CI, 0.4 to 2.1), respectively. There was no significant association of VTE with micronized progesterone and pregnane derivatives (OR, 0.7; 95% CI, 0.3 to 1.9 and OR, 0.9; 95% CI, 0.4 to 2.3, respectively). In contrast, norpregnane derivatives were associated with a 4-fold-increased VTE risk (OR, 3.9; 95% CI, 1.5 to 10.0). Oral but not transdermal estrogen is associated with an increased VTE risk. In addition, our data suggest that norpregnane derivatives may be thrombogenic, whereas micronized progesterone and pregnane derivatives appear safe with respect to thrombotic risk. If confirmed, these findings could benefit women in the management of their menopausal symptoms with respect to the VTE risk associated with oral estrogen and use of progestogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long-term hormone therapy for perimenopausal and postmenopausal women.

            BACKGROUND: Hormone therapy (HT) is widely provided for control of menopausal symptoms and has been used for the management and prevention of cardiovascular disease, osteoporosis and dementia in older women. This is an updated version of a Cochrane review first published in 2005. OBJECTIVES: To assess effects of long-term HT (at least 1 year's duration) on mortality, cardiovascular outcomes, cancer, gallbladder disease, fracture and cognition in perimenopausal and postmenopausal women during and after cessation of treatment. SEARCH METHODS: We searched the following databases to September 2016: Cochrane Gynaecology and Fertility Group Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase and PsycINFO. We searched the registers of ongoing trials and reference lists provided in previous studies and systematic reviews. SELECTION CRITERIA: We included randomised double-blinded studies of HT versus placebo, taken for at least 1 year by perimenopausal or postmenopausal women. HT included oestrogens, with or without progestogens, via the oral, transdermal, subcutaneous or intranasal route. DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies, assessed risk of bias and extracted data. We calculated risk ratios (RRs) for dichotomous data and mean differences (MDs) for continuous data, along with 95% confidence intervals (CIs). We assessed the quality of the evidence by using GRADE methods. MAIN RESULTS: We included 22 studies involving 43,637 women. We derived nearly 70% of the data from two well-conducted studies (HERS 1998; WHI 1998). Most participants were postmenopausal American women with at least some degree of comorbidity, and mean participant age in most studies was over 60 years. None of the studies focused on perimenopausal women.In relatively healthy postmenopausal women (i.e. generally fit, without overt disease), combined continuous HT increased the risk of a coronary event (after 1 year's use: from 2 per 1000 to between 3 and 7 per 1000), venous thromboembolism (after 1 year's use: from 2 per 1000 to between 4 and 11 per 1000), stroke (after 3 years' use: from 6 per 1000 to between 6 and 12 per 1000), breast cancer (after 5.6 years' use: from 19 per 1000 to between 20 and 30 per 1000), gallbladder disease (after 5.6 years' use: from 27 per 1000 to between 38 and 60 per 1000) and death from lung cancer (after 5.6 years' use plus 2.4 years' additional follow-up: from 5 per 1000 to between 6 and 13 per 1000).Oestrogen-only HT increased the risk of venous thromboembolism (after 1 to 2 years' use: from 2 per 1000 to 2 to 10 per 1000; after 7 years' use: from 16 per 1000 to 16 to 28 per 1000), stroke (after 7 years' use: from 24 per 1000 to between 25 and 40 per 1000) and gallbladder disease (after 7 years' use: from 27 per 1000 to between 38 and 60 per 1000) but reduced the risk of breast cancer (after 7 years' use: from 25 per 1000 to between 15 and 25 per 1000) and clinical fracture (after 7 years' use: from 141 per 1000 to between 92 and 113 per 1000) and did not increase the risk of coronary events at any follow-up time.Women over 65 years of age who were relatively healthy and taking continuous combined HT showed an increase in the incidence of dementia (after 4 years' use: from 9 per 1000 to 11 to 30 per 1000). Among women with cardiovascular disease, use of combined continuous HT significantly increased the risk of venous thromboembolism (at 1 year's use: from 3 per 1000 to between 3 and 29 per 1000). Women taking HT had a significantly decreased incidence of fracture with long-term use.Risk of fracture was the only outcome for which strong evidence showed clinical benefit derived from HT (after 5.6 years' use of combined HT: from 111 per 1000 to between 79 and 96 per 1000; after 7.1 years' use of oestrogen-only HT: from 141 per 1000 to between 92 and 113 per 1000). Researchers found no strong evidence that HT has a clinically meaningful impact on the incidence of colorectal cancer.One trial analysed subgroups of 2839 relatively healthy women 50 to 59 years of age who were taking combined continuous HT and 1637 who were taking oestrogen-only HT versus similar-sized placebo groups. The only significantly increased risk reported was for venous thromboembolism in women taking combined continuous HT: Their absolute risk remained low, at less than 1/500. However, other differences in risk cannot be excluded, as this study was not designed to have the power to detect differences between groups of women within 10 years of menopause.For most studies, risk of bias was low in most domains. The overall quality of evidence for the main comparisons was moderate. The main limitation in the quality of evidence was that only about 30% of women were 50 to 59 years old at baseline, which is the age at which women are most likely to consider HT for vasomotor symptoms. AUTHORS' CONCLUSIONS: Women with intolerable menopausal symptoms may wish to weigh the benefits of symptom relief against the small absolute risk of harm arising from short-term use of low-dose HT, provided they do not have specific contraindications. HT may be unsuitable for some women, including those at increased risk of cardiovascular disease, increased risk of thromboembolic disease (such as those with obesity or a history of venous thrombosis) or increased risk of some types of cancer (such as breast cancer, in women with a uterus). The risk of endometrial cancer among women with a uterus taking oestrogen-only HT is well documented.HT is not indicated for primary or secondary prevention of cardiovascular disease or dementia, nor for prevention of deterioration of cognitive function in postmenopausal women. Although HT is considered effective for the prevention of postmenopausal osteoporosis, it is generally recommended as an option only for women at significant risk for whom non-oestrogen therapies are unsuitable. Data are insufficient for assessment of the risk of long-term HT use in perimenopausal women and in postmenopausal women younger than 50 years of age.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Progestogens used in postmenopausal hormone therapy: differences in their pharmacological properties, intracellular actions, and clinical effects.

              The safety of progestogens as a class has come under increased scrutiny after the publication of data from the Women's Health Initiative trial, particularly with respect to breast cancer and cardiovascular disease risk, despite the fact that only one progestogen, medroxyprogesterone acetate, was used in this study. Inconsistency in nomenclature has also caused confusion between synthetic progestogens, defined here by the term progestin, and natural progesterone. Although all progestogens by definition have progestational activity, they also have a divergent range of other properties that can translate to very different clinical effects. Endometrial protection is the primary reason for prescribing a progestogen concomitantly with postmenopausal estrogen therapy in women with a uterus, but several progestogens are known to have a range of other potentially beneficial effects, for example on the nervous and cardiovascular systems. Because women remain suspicious of the progestogen component of postmenopausal hormone therapy in the light of the Women's Health Initiative trial, practitioners should not ignore the potential benefits to their patients of some progestogens by considering them to be a single pharmacological class. There is a lack of understanding of the differences between progestins and progesterone and between individual progestins differing in their effects on the cardiovascular and nervous systems, the breast, and bone. This review elucidates the differences between the substantial number of individual progestogens employed in postmenopausal hormone therapy, including both progestins and progesterone. We conclude that these differences in chemical structure, metabolism, pharmacokinetics, affinity, potency, and efficacy via steroid receptors, intracellular action, and biological and clinical effects confirm the absence of a class effect of progestogens.
                Bookmark

                Author and article information

                Contributors
                Role: research fellow in medical statistics
                Role: professor of medical statistics in primary care
                Role: professor of clinical epidemiology and general practice
                Journal
                BMJ
                BMJ
                BMJ-UK
                bmj
                The BMJ
                BMJ Publishing Group Ltd.
                0959-8138
                1756-1833
                2019
                09 January 2019
                : 364
                : k4810
                Affiliations
                [1 ]Division of Primary Care, University of Nottingham, Nottingham NG2 7RD, UK
                Author notes
                Correspondence to: Y Vinogradova Yana.Vinogradova@ 123456nottingham.ac.uk
                Author information
                http://orcid.org/0000-0002-3030-5257
                Article
                viny046401
                10.1136/bmj.k4810
                6326068
                30626577
                90abcf97-44b4-4298-8414-81e66048128d
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/.

                History
                : 06 November 2018
                Categories
                Research

                Medicine
                Medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content189

                Cited by114

                Most referenced authors549