1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Machine learning accelerates the investigation of targeted MOFs: Performance prediction, rational design and intelligent synthesis

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references259

          • Record: found
          • Abstract: not found
          • Article: not found

          Random Forests

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Commentary: The Materials Project: A materials genome approach to accelerating materials innovation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mastering the game of Go with deep neural networks and tree search.

              The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach to computer Go that uses 'value networks' to evaluate board positions and 'policy networks' to select moves. These deep neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm, our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the full-sized game of Go, a feat previously thought to be at least a decade away.
                Bookmark

                Author and article information

                Journal
                Nano Today
                Nano Today
                Elsevier BV
                17480132
                April 2023
                April 2023
                : 49
                : 101802
                Article
                10.1016/j.nantod.2023.101802
                907a98ac-ed4b-4841-8f23-47226a7b4571
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article