13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Measurement of cellulase activities

          T. Ghose (1987)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lignocellulosic residues: biodegradation and bioconversion by fungi.

            The ability of fungi to degrade lignocellulosic materials is due to their highly efficient enzymatic system. Fungi have two types of extracellular enzymatic systems; the hydrolytic system, which produces hydrolases that are responsible for polysaccharide degradation and a unique oxidative and extracellular ligninolytic system, which degrades lignin and opens phenyl rings. Lignocellulosic residues from wood, grass, agricultural, forestry wastes and municipal solid wastes are particularly abundant in nature and have a potential for bioconversion. Accumulation of lignocellulosic materials in large quantities in places where agricultural residues present a disposal problem results not only in deterioration of the environment but also in loss of potentially valuable material that can be used in paper manufacture, biomass fuel production, composting, human and animal feed among others. Several novel markets for lignocellulosic residues have been identified recently. The use of fungi in low cost bioremediation projects might be attractive given their lignocellulose hydrolysis enzyme machinery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hydrolysis of lignocellulosic materials for ethanol production: a review.

              Lignocellulosic biomass can be utilized to produce ethanol, a promising alternative energy source for the limited crude oil. There are mainly two processes involved in the conversion: hydrolysis of cellulose in the lignocellulosic biomass to produce reducing sugars, and fermentation of the sugars to ethanol. The cost of ethanol production from lignocellulosic materials is relatively high based on current technologies, and the main challenges are the low yield and high cost of the hydrolysis process. Considerable research efforts have been made to improve the hydrolysis of lignocellulosic materials. Pretreatment of lignocellulosic materials to remove lignin and hemicellulose can significantly enhance the hydrolysis of cellulose. Optimization of the cellulase enzymes and the enzyme loading can also improve the hydrolysis. Simultaneous saccharification and fermentation effectively removes glucose, which is an inhibitor to cellulase activity, thus increasing the yield and rate of cellulose hydrolysis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                15 March 2016
                2016
                : 7
                : 324
                Affiliations
                Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw Warsaw, Poland
                Author notes

                Edited by: Cheng Zhong, Tianjin University of Science and Technology, China

                Reviewed by: Raffaella Balestrini, Consiglio Nazionale delle Ricerche, Italy; Steven Singer, Lawrence Berkeley National Laboratory, USA

                *Correspondence: Krzysztof Poszytek, kposzytek@ 123456biol.uw.edu.pl

                This article was submitted to Systems Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2016.00324
                4791528
                27014244
                90770f83-a9df-432f-8d1e-4b038fffbc96
                Copyright © 2016 Poszytek, Ciezkowska, Sklodowska and Drewniak.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 October 2015
                : 29 February 2016
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 46, Pages: 11, Words: 0
                Funding
                Funded by: Narodowe Centrum Bada? i Rozwoju 10.13039/501100005632
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                lignocellulosic biomass,cellulose,hydrolysis,anaerobic digestion,microbial consortium

                Comments

                Comment on this article