Non-invasive neuroimaging methods have been developed as powerful tools for identifying in vivo brain functions for studies in humans and animals. Here we review the imaging biomarkers that are being used to determine the changes within brain metabolic and vascular functions induced by caloric restriction (CR), and their potential usefulness for future studies with dietary interventions in humans.
CR causes an early shift in brain metabolism of glucose to ketone bodies, and enhances ATP production, neuronal activity and cerebral blood flow (CBF). With age, CR preserves mitochondrial activity, neurotransmission, CBF, and spatial memory. CR also reduces anxiety in aging mice. Neuroimaging studies in humans show that CR restores abnormal brain activity in the amygdala of women with obesity and enhances brain connectivity in old adults.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.