4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wearable and Nearable Biosensors and Systems for Healthcare

      editorial
      1 , * , 2
      Sensors (Basel, Switzerland)
      MDPI

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring anytime and anywhere. Such monitoring can be beneficial in various ways. Most notably, it can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered, and volume-based system into a future proactive, personalized, decentralized, and valued-based system. This new system and other benefits of the technology hold great promise for longer and healthier living. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Examples of measurements offered by these technologies include biopotentials, body motion, pressure, blood volume, temperature, and biochemical markers. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. The aim of this Special Issue of Sensors is to provide an open collection of state-of-the-art investigations on wearable and nearable biosensors and systems in order to foster further technological advances and the use of the technology to benefit healthcare. The 12 papers that constitute this Special Issue offer both depth and breadth pertaining to wearable and nearable technology [1,2,3,4,5,6,7,8,9,10,11,12]. Depth is afforded through a critical mass of studies on accelerometers [3,4,5,7,9,10], signal processing [1,2,4,5,7,10,11], and cardiovascular monitoring applications [2,5,6,7,9,10,12], whereas breadth is given through new biosensors [12] and data transmission [9], other clinical applications including surgical training [8] and brain-computer interfaces [1], and validation of commercial devices [6], which is crucial for adoption. We provide a flavor of each contribution below in order of appearance in this issue. Majidov et al. [1] developed a machine learning technique to analyze EEG signals from a wearable electrode cap for brain–computer interface (BCI) applications. The technique was developed using a formal BCI competition dataset in which 18 subjects performed an imaginary movement of hands and feet, and comprised a number of analytical tools including online deep learning with data augmentation. They showed that the technique was able to increase the classification accuracy compared to earlier techniques. Huysmans et al. [2] developed a machine learning technique to analyze a bed-based ballistocardiography (BCG) signal (i.e., a measure of the whole-body movement induced by the heartbeat) for sleep apnea screening and sleep monitoring. The fully automatic technique employed unsupervised, k-means clustering to reveal artifact (apnea) versus clean signals. They showed that the technique can detect subjects with significant apnea while also revealing how the bed pressure sensor should be used to enable future supervised learning. Bolus et al. [3] developed a glove with a fingertip mounted accelerometer for monitoring the health of joints via acoustic emissions. The new form factor for measuring joint sounds eliminates the need for consumables like tape and associated interface noise. They showed that the device can yield reliable measurements under constant fingertip contact force in subjects during an intervention to alter the knee joint sound. Del Rosario et al. [4] developed a machine learning technique to determine body position from a smartphone inertial measurement unit (IMU) placed at an arbitrary orientation for various applications including fall detection. The technique uses hand-crafted instead of deep-learning-based IMU features learned during walking periods as a reference for upright body posture. They showed that this technique can separate standing versus sedentary periods using only one smartphone IMU in the pocket of younger and older subjects. Yao et al. [5] developed a wearable system for cuff-less tracking of blood pressure changes. The system measures a BCG signal via an armband accelerometer and a photo-plethysmography (PPG) signal via a finger clip, extracts data-driven features including the time delay between the signals (pulse transit time), and performs cuff calibration to map the features to blood pressure. They showed that this system as well as a BCG–PPG weighing scale system could track blood pressure changes during interventions in healthy subjects. Passier et al. [6] performed a validation study to compare two commercial in-ear PPG sensor devices for detecting heart rate during intense physical activity. The study is unique in terms of assessing external auditory canal PPG sensor devices and included 20 subjects during graded cycling. Both devices attained acceptable mean absolute heart rate errors compared to the reference ECG over a wide heart rate range but were not particularly precise. Landreani et al. [7] developed a signal processing technique to quantify ultra-short-term heart rate variability via a smartphone accelerometer for stress detection. The technique involves placing the smartphone on the abdomen and detecting each heartbeat from the resulting BCG signal via cross correlation with a template. They showed the efficacy of the technique in detecting vagal withdrawal during mental arithmetic in healthy subjects. de Mathelin et al. [8] developed a glove for establishing objective criteria of the expertise needed for surgeons to operate a transluminal robotic assistance system. The glove includes 12 wireless force sensitive resistors for measuring hand grip forces under visual feedback from the system. They revealed important differences in the handgrip forces of an expert versus a novice in performing an exemplary pick and drop task. Di Rienzo et al. [9] developed a wearable acquisition platform for the monitoring of various cardiovascular features including pulse transit time and cardiac contractility. The platform is capable of measuring 36 signals from 12 wireless nodes, including ECG, seismocardiography (SCG, i.e., accelerometer-based measure of chest vibrations caused by the heartbeat), and PPG sensors. Field tests showed that the system can acquire good quality data in real life with a synchronization error between nodes lower than 1ms. Yu et al. [10] developed a signal processing technique to remove the common motion artifact in the SCG signal. Since the artifact is typically mixed with the heartbeat in time and frequency, the technique is based on adaptive recursive least squares. They showed that the technique could extract a clear signal without further processing from only one accelerometer and detect the heart rate with high accuracy in healthy subjects. Asci et al. [11] developed a machine learning technique to analyze smartphone voice signals for assessing physiological aging. The technique extracts thousands of signal features, performs feature reduction, and then applies a support vector machine to classify age and gender. They notably showed the efficacy of the technique in subjects in a free-living scenario to eliminate potential voice changes in supervised conditions. Farooq et al. [12] developed a thin-filmed flexible wireless pressure sensor for interface pressure monitoring during leg compression treatment of venous insufficiency. The sensor is based on a pressure-dependent capacitance and inductive coil to allow passive and wireless measurement. Through analytical and experimental testing, they showed that the sensor offers sensitivity that is competitive with existing technology but with lower-cost fabrication. We hope that this editorial serves as a useful guide to this collection of papers and that the Special Issue does end up inspiring future efforts to bring an array of wearable and nearable biosensors and systems to healthcare practices.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods

          Single-trial motor imagery classification is a crucial aspect of brain–computer applications. Therefore, it is necessary to extract and discriminate signal features involving motor imagery movements. Riemannian geometry-based feature extraction methods are effective when designing these types of motor-imagery-based brain–computer interface applications. In the field of information theory, Riemannian geometry is mainly used with covariance matrices. Accordingly, investigations showed that if the method is used after the execution of the filterbank approach, the covariance matrix preserves the frequency and spatial information of the signal. Deep-learning methods are superior when the data availability is abundant and while there is a large number of features. The purpose of this study is to a) show how to use a single deep-learning-based classifier in conjunction with BCI (brain–computer interface) applications with the CSP (common spatial features) and the Riemannian geometry feature extraction methods in BCI applications and to b) describe one of the wrapper feature-selection algorithms, referred to as the particle swarm optimization, in combination with a decision tree algorithm. In this work, the CSP method was used for a multiclass case by using only one classifier. Additionally, a combination of power spectrum density features with covariance matrices mapped onto the tangent space of a Riemannian manifold was used. Furthermore, the particle swarm optimization method was implied to ease the training by penalizing bad features, and the moving windows method was used for augmentation. After empirical study, the convolutional neural network was adopted to classify the pre-processed data. Our proposed method improved the classification accuracy for several subjects that comprised the well-known BCI competition IV 2a dataset.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            In-Ear Pulse Rate Measurement: A Valid Alternative to Heart Rate Derived from Electrocardiography?

            Heart rate measurement has become one of the most widely used methods of monitoring the intensity of physical activity. The purpose of this study was to assess whether in-ear photoplethysmographic (PPG) pulse rate (PR) measurement devices represent a valid alternative to heart rate derived from electrocardiography (ECG), which is considered a gold standard. Twenty subjects (6 women, 14 men) completed one trial of graded cycling under laboratory conditions. In the trial, PR was recorded by two commercially available in-ear devices, the Dash Pro and the Cosinuss°One. They were compared to HR measured by a Bodyguard2 ECG. Validity of the in-ear PR measurement devices was tested by ANOVA, mean absolute percentage errors (MAPE), intra-class correlation coefficient (ICC), and Bland–Altman plots. Both devices achieved a MAPE ≤5%. Despite excellent to good levels of agreement, Bland–Altman plots showed that both in-ear devices tend to slightly underestimate the ECG’s HR values. It may be concluded that in-ear PPG PR measurement is a promising technique that shows accurate but imprecise results under controlled conditions. However, PPG PR measurement in the ear is sensitive to motion artefacts. Thus, accuracy and precision of the measured PR depend highly on measurement site, stress situation, and exercise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Machine-Learning Analysis of Voice Samples Recorded through Smartphones: The Combined Effect of Ageing and Gender

              Background: Experimental studies using qualitative or quantitative analysis have demonstrated that the human voice progressively worsens with ageing. These studies, however, have mostly focused on specific voice features without examining their dynamic interaction. To examine the complexity of age-related changes in voice, more advanced techniques based on machine learning have been recently applied to voice recordings but only in a laboratory setting. We here recorded voice samples in a large sample of healthy subjects. To improve the ecological value of our analysis, we collected voice samples directly at home using smartphones. Methods: 138 younger adults (65 males and 73 females, age range: 15–30) and 123 older adults (47 males and 76 females, age range: 40–85) produced a sustained emission of a vowel and a sentence. The recorded voice samples underwent a machine learning analysis through a support vector machine algorithm. Results: The machine learning analysis of voice samples from both speech tasks discriminated between younger and older adults, and between males and females, with high statistical accuracy. Conclusions: By recording voice samples through smartphones in an ecological setting, we demonstrated the combined effect of age and gender on voice. Our machine learning analysis demonstrates the effect of ageing on voice.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                11 February 2021
                February 2021
                : 21
                : 4
                : 1291
                Affiliations
                [1 ]Polo Tecnologico, IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
                [2 ]Department of Bioengineering and Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; rmukkamala@ 123456pitt.edu
                Author notes
                Author information
                https://orcid.org/0000-0002-8627-9369
                https://orcid.org/0000-0001-8918-4050
                Article
                sensors-21-01291
                10.3390/s21041291
                7917941
                33670251
                903dade8-f647-4af2-9149-8507f7902c02
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 February 2021
                : 09 February 2021
                Categories
                Editorial

                Biomedical engineering
                Biomedical engineering

                Comments

                Comment on this article