16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The vagal paradox: A polyvagal solution

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although there is a consistent literature documenting that vagal cardioinhibitory pathways support homeostatic functions, another less frequently cited literature implicates vagal cardioinhibitory pathways in compromises to survival in humans and other mammals. The latter is usually associated with threat reactions, chronic stress, and potentially lethal clinical conditions such as hypoxia. Solving this ‘vagal paradox’ in studies conducted in the neonatal intensive care unit served as the motivator for the Polyvagal Theory (PVT). The paradox is resolved when the different functions of vagal cardioinhibitory fibers originating in two anatomically distinguishable brainstem areas are recognized. One pathway originates in a dorsal area known as the dorsal motor nucleus of the vagus and the other in a ventral area of the brainstem known as nucleus ambiguus. Unlike mammals, in all ancestral vertebrates from which mammals evolved, cardioinhibitory vagal fibers primarily originate in the dorsal motor nucleus of the vagus. Thus, in mammals the vagus nerve is ‘poly’ vagal because it contains two distinct efferent pathways. Developmental and evolutionary biology identify a ventral migration of vagal cardioinhibitory fibers that culminate in an integrated circuit that has been labeled the ventral vagal complex. This complex consists of the interneuronal communication of the ventral vagus with the source nuclei involved in regulating the striated muscles of the head and face via special visceral efferent pathways. This integrated system enables the coordination of vagal regulation of the heart with sucking, swallowing, breathing, and vocalizing and forms the basis of a social engagement system that allows sociality to be a potent neuromodulator resulting in calm states that promote homeostatic function. These biobehavioral features, dependent on the maturation of the ventral vagal complex, can be compromised in preterm infants. Developmental biology informs us that in the immature mammal (e.g., fetus, preterm infant) the ventral vagus is not fully functional and myelinization is not complete; this neuroanatomical profile may potentiate the impact of vagal cardioinhibitory pathways originating in the dorsal motor nucleus of the vagus. This vulnerability is confirmed clinically in the life-threatening reactions of apnea and bradycardia in human preterm newborns, which are hypothetically mediated through chronotropic dorsal vagal pathways. Neuroanatomical research documents that the distribution of cardioinhibitory neurons representing these two distinct vagal source nuclei varies among mammals and changes during early development. By explaining the solution of the ‘vagal paradox’ in the preterm human, the paper highlights the functional cardioinhibitory functions of the two vagal source nuclei and provides the scientific foundation for the testing of hypotheses generated by PVT.

          Highlights

          • Autonomic state functions as an intervening variable.

          • A phylogenetically ordered response hierarchy that regulate autonomic state adaptation to safe, dangerous, and life-threatening environments.

          • In response to a challenge, the ANS shifts states consistent with the Jacksonian principle of dissolution.

          • Ventral migration of cardioinhibitory neurons leads to a ventral vagal circuit that supports an integrated social engagement system.

          • Reflexive detection of risk (i.e., neuroception) triggers adaptive autonomic state to optimize survival.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          The polyvagal perspective.

          The polyvagal theory introduced a new perspective relating autonomic function to behavior, that included an appreciation of the autonomic nervous system as a "system," the identification of neural circuits involved in the regulation of autonomic state, and an interpretation of autonomic reactivity as adaptive within the context of the phylogeny of the vertebrate autonomic nervous system. The paper has two objectives: first, to provide an explicit statement of the theory; and second, to introduce the features of a polyvagal perspective. The polyvagal perspective emphasizes how an understanding of neurophysiological mechanisms and phylogenetic shifts in neural regulation leads to different questions, paradigms, explanations, and conclusions regarding autonomic function in biobehavioral processes than peripheral models. Foremost, the polyvagal perspective emphasizes the importance of phylogenetic changes in the neural structures regulating the autonomic nervous system and how these phylogenetic shifts provide insights into the adaptive function and the neural regulation of the two vagal systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The polyvagal theory: phylogenetic substrates of a social nervous system.

            The evolution of the autonomic nervous system provides an organizing principle to interpret the adaptive significance of physiological responses in promoting social behavior. According to the polyvagal theory, the well-documented phylogenetic shift in neural regulation of the autonomic nervous system passes through three global stages, each with an associated behavioral strategy. The first stage is characterized by a primitive unmyelinated visceral vagus that fosters digestion and responds to threat by depressing metabolic activity. Behaviorally, the first stage is associated with immobilization behaviors. The second stage is characterized by the sympathetic nervous system that is capable of increasing metabolic output and inhibiting the visceral vagus to foster mobilization behaviors necessary for 'fight or flight'. The third stage, unique to mammals, is characterized by a myelinated vagus that can rapidly regulate cardiac output to foster engagement and disengagement with the environment. The mammalian vagus is neuroanatomically linked to the cranial nerves that regulate social engagement via facial expression and vocalization. As the autonomic nervous system changed through the process of evolution, so did the interplay between the autonomic nervous system and the other physiological systems that respond to stress, including the cortex, the hypothalamic-pituitary-adrenal axis, the neuropeptides of oxytocin and vasopressin, and the immune system. From this phylogenetic orientation, the polyvagal theory proposes a biological basis for social behavior and an intervention strategy to enhance positive social behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A Polyvagal Theory.

              The vagus, the 10th cranial nerve, contains pathways that contribute to the regulation of the internal viscera, including the heart. Vagal efferent fibers do not originate in a common brainstem structure. The Polyvagal Theory is introduced to explain the different functions of the two primary medullary source nuclei of the vagus: the nucleus ambiguus (NA) and the dorsal motor nucleus (DMNX). Although vagal pathways from both nuclei terminate on the sinoatrial node, it is argued that the fibers originating in NA are uniquely responsible for respiratory sinus arrhythmia (RSA). Divergent shifts in RSA and heart rate are explained by independent actions of DMNX and NA. The theory emphasizes a phylogenetic perspective and speculates that mammalian, but not reptilian, brainstem organization is characterized by a ventral vagal complex (including NA) related to processes associated with attention, motion, emotion, and communication. Various clinical disorders, such as sudden infant death syndrome and asthma, may be related to the competition between DMNX and NA.
                Bookmark

                Author and article information

                Contributors
                Journal
                Compr Psychoneuroendocrinol
                Compr Psychoneuroendocrinol
                Comprehensive Psychoneuroendocrinology
                Elsevier
                2666-4976
                09 August 2023
                November 2023
                09 August 2023
                : 16
                : 100200
                Affiliations
                [a ]Traumatic Stress Research Consortium, Kinsey Institute, Indiana University, Bloomington, IN, USA
                [b ]University of North Carolina at Chapel Hill, Chapel Hill, USA
                Author notes
                []Ocean Breeze Court, Atlantic Beach, FL, 32233, USA. sporges@ 123456gmail.com
                Article
                S2666-4976(23)00034-6 100200
                10.1016/j.cpnec.2023.100200
                10724739
                38108034
                90325551-7bfc-437b-a6da-3273936a666b
                © 2023 The Author

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 April 2023
                : 2 August 2023
                : 4 August 2023
                Categories
                Review

                polyvagal theory,autonomic nervous system,ventral vagal complex,dorsal vagus,engagement system,threat reactions,feelings of safety,neuroception

                Comments

                Comment on this article