1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Up digital and personal: How heart digital twins can transform heart patient care

      ,
      Heart Rhythm
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure.

          Sudden death from cardiac causes remains a leading cause of death among patients with congestive heart failure (CHF). Treatment with amiodarone or an implantable cardioverter-defibrillator (ICD) has been proposed to improve the prognosis in such patients. We randomly assigned 2521 patients with New York Heart Association (NYHA) class II or III CHF and a left ventricular ejection fraction (LVEF) of 35 percent or less to conventional therapy for CHF plus placebo (847 patients), conventional therapy plus amiodarone (845 patients), or conventional therapy plus a conservatively programmed, shock-only, single-lead ICD (829 patients). Placebo and amiodarone were administered in a double-blind fashion. The primary end point was death from any cause. The median LVEF in patients was 25 percent; 70 percent were in NYHA class II, and 30 percent were in class III CHF. The cause of CHF was ischemic in 52 percent and nonischemic in 48 percent. The median follow-up was 45.5 months. There were 244 deaths (29 percent) in the placebo group, 240 (28 percent) in the amiodarone group, and 182 (22 percent) in the ICD group. As compared with placebo, amiodarone was associated with a similar risk of death (hazard ratio, 1.06; 97.5 percent confidence interval, 0.86 to 1.30; P=0.53) and ICD therapy was associated with a decreased risk of death of 23 percent (0.77; 97.5 percent confidence interval, 0.62 to 0.96; P=0.007) and an absolute decrease in mortality of 7.2 percentage points after five years in the overall population. Results did not vary according to either ischemic or nonischemic causes of CHF, but they did vary according to the NYHA class. In patients with NYHA class II or III CHF and LVEF of 35 percent or less, amiodarone has no favorable effect on survival, whereas single-lead, shock-only ICD therapy reduces overall mortality by 23 percent. Copyright 2005 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Digital twin-driven product design, manufacturing and service with big data

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study.

              Left atrial fibrosis is prominent in patients with atrial fibrillation (AF). Extensive atrial tissue fibrosis identified by delayed enhancement magnetic resonance imaging (MRI) has been associated with poor outcomes of AF catheter ablation. To characterize the feasibility of atrial tissue fibrosis estimation by delayed enhancement MRI and its association with subsequent AF ablation outcome. Multicenter, prospective, observational cohort study of patients diagnosed with paroxysmal and persistent AF (undergoing their first catheter ablation) conducted between August 2010 and August 2011 at 15 centers in the United States, Europe, and Australia. Delayed enhancement MRI images were obtained up to 30 days before ablation. Fibrosis quantification was performed at a core laboratory blinded to the participating center, ablation approach, and procedure outcome. Fibrosis blinded to the treating physicians was categorized as stage 1 (<10% of the atrial wall), 2 (≥10%-<20%), 3 (≥20%-<30%), and 4 (≥30%). Patients were followed up for recurrent arrhythmia per current guidelines using electrocardiography or ambulatory monitor recording and results were analyzed at a core laboratory. Cumulative incidence of recurrence was estimated by stage at days 325 and 475 after a 90-day blanking period (standard time allowed for arrhythmias related to ablation-induced inflammation to subside) and the risk of recurrence was estimated (adjusting for 10 demographic and clinical covariates). Atrial tissue fibrosis estimation by delayed enhancement MRI was successfully quantified in 272 of 329 enrolled patients (57 patients [17%] were excluded due to poor MRI quality). There were 260 patients who were followed up after the blanking period (mean [SD] age of 59.1 [10.7] years, 31.5% female, 64.6% with paroxysmal AF). For recurrent arrhythmia, the unadjusted overall hazard ratio per 1% increase in left atrial fibrosis was 1.06 (95% CI, 1.03-1.08; P < .001). Estimated unadjusted cumulative incidence of recurrent arrhythmia by day 325 for stage 1 fibrosis was 15.3% (95% CI, 7.6%-29.6%); stage 2, 32.6% (95% CI, 24.3%-42.9%); stage 3, 45.9% (95% CI, 35.5%-57.5%); and stage 4, 51.1% (95% CI, 32.8%-72.2%) and by day 475 was 15.3% (95% CI, 7.6%-29.6%), 35.8% (95% CI, 26.2%-47.6%), 45.9% (95% CI, 35.6%-57.5%), and 69.4% (95% CI, 48.6%-87.7%), respectively. Similar results were obtained after covariate adjustment. The addition of fibrosis to a recurrence prediction model that includes traditional clinical covariates resulted in an improved predictive accuracy with the C statistic increasing from 0.65 to 0.69 (risk difference of 0.05; 95% CI, 0.01-0.09). Among patients with AF undergoing catheter ablation, atrial tissue fibrosis estimated by delayed enhancement MRI was independently associated with likelihood of recurrent arrhythmia. The clinical implications of this association warrant further investigation.
                Bookmark

                Author and article information

                Journal
                Heart Rhythm
                Heart Rhythm
                Elsevier BV
                15475271
                January 2024
                January 2024
                : 21
                : 1
                : 89-99
                Article
                10.1016/j.hrthm.2023.10.019
                10872898
                37871809
                9023fe26-287a-4862-9271-d2b328de2f87
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article