12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inhibition of β-lactamase function by de novo designed peptide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance is a great public health concern that is now described as a “silent pandemic”. The global burden of antimicrobial resistance requires new antibacterial treatments, especially for the most challenging multidrug-resistant bacteria. There are various mechanisms by which bacteria develop antimicrobial resistance including expression of β-lactamase enzymes, overexpression of efflux pumps, reduced cell permeability through downregulation of porins required for β-lactam entry, or modifications in penicillin-binding proteins. Inactivation of the β-lactam antibiotics by β-lactamase enzymes is the most common mechanism of bacterial resistance to these agents. Although several effective small-molecule inhibitors of β-lactamases such as clavulanic acid and avibactam are clinically available, they act only on selected class A, C, and some class D enzymes. Currently, none of the clinically approved inhibitors can effectively inhibit Class B metallo-β-lactamases. Additionally, there is increased resistance to these inhibitors reported in several bacteria. The objective of this study is to use the Resonant Recognition Model (RRM), as a novel strategy to inhibit/modulate specific antimicrobial resistance targets. The RRM is a bio-physical approach that analyzes the distribution of energies of free electrons and posits that there is a significant correlation between the spectra of this energy distribution and related protein biological activity. In this study, we have used the RRM concept to evaluate the structure-function properties of a group of 22 β-lactamase proteins and designed 30-mer peptides with the desired RRM spectral periodicities (frequencies) to function as β-lactamase inhibitors. In contrast to the controls, our results indicate 100% inhibition of the class A β-lactamases from Escherichia coli and Enterobacter cloacae. Taken together, the RRM model can likely be utilized as a promising approach to design β-lactamase inhibitors for any specific class. This may open a new direction to combat antimicrobial resistance.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis

          The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Due to its large public health and societal implications, multidrug-resistant tuberculosis has been long regarded by WHO as a global priority for investment in new drugs. In 2016, WHO was requested by member states to create a priority list of other antibiotic-resistant bacteria to support research and development of effective drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global increase and geographic convergence in antibiotic consumption between 2000 and 2015

            Significance Antibiotic resistance, driven by antibiotic consumption, is a growing global health threat. Our report on antibiotic use in 76 countries over 16 years provides an up-to-date comprehensive assessment of global trends in antibiotic consumption. We find that the antibiotic consumption rate in low- and middle-income countries (LMICs) has been converging to (and in some countries surpassing) levels typically observed in high-income countries. However, inequities in drug access persist, as many LMICs continue to be burdened with high rates of infectious disease-related mortality and low rates of antibiotic consumption. Our findings emphasize the need for global surveillance of antibiotic consumption to support policies to reduce antibiotic consumption and resistance while providing access to these lifesaving drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbapenemases: the versatile beta-lactamases.

              Carbapenemases are beta-lactamases with versatile hydrolytic capacities. They have the ability to hydrolyze penicillins, cephalosporins, monobactams, and carbapenems. Bacteria producing these beta-lactamases may cause serious infections in which the carbapenemase activity renders many beta-lactams ineffective. Carbapenemases are members of the molecular class A, B, and D beta-lactamases. Class A and D enzymes have a serine-based hydrolytic mechanism, while class B enzymes are metallo-beta-lactamases that contain zinc in the active site. The class A carbapenemase group includes members of the SME, IMI, NMC, GES, and KPC families. Of these, the KPC carbapenemases are the most prevalent, found mostly on plasmids in Klebsiella pneumoniae. The class D carbapenemases consist of OXA-type beta-lactamases frequently detected in Acinetobacter baumannii. The metallo-beta-lactamases belong to the IMP, VIM, SPM, GIM, and SIM families and have been detected primarily in Pseudomonas aeruginosa; however, there are increasing numbers of reports worldwide of this group of beta-lactamases in the Enterobacteriaceae. This review updates the characteristics, epidemiology, and detection of the carbapenemases found in pathogenic bacteria.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: Project administrationRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: MethodologyRole: ResourcesRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: ResourcesRole: Writing – review & editing
                Role: ConceptualizationRole: MethodologyRole: ResourcesRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLOS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                8 September 2023
                2023
                : 18
                : 9
                : e0290845
                Affiliations
                [1 ] Division of Microbiology & Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California, United States America
                [2 ] AMALNA Consulting, Black Rock, Melbourne, VIC, Australia
                [3 ] QuantBioRes-QBR A/S, Copenhagen, Denmark
                UAE University: United Arab Emirates University, UNITED ARAB EMIRATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0009-0001-1768-9954
                Article
                PONE-D-23-14582
                10.1371/journal.pone.0290845
                10490870
                37682912
                8fe99ea9-ed22-4dbe-a4b0-06a9a613bc90
                © 2023 Mishra et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 May 2023
                : 16 August 2023
                Page count
                Figures: 6, Tables: 2, Pages: 15
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000072, National Institute of Dental and Craniofacial Research;
                Award ID: DE029825
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000072, National Institute of Dental and Craniofacial Research;
                Award ID: DE030411 and DE025852
                Award Recipient :
                Funded by: QuantBioRes-QBR A/S
                Award Recipient :
                RRM analysis, peptide design and peptide synthesis were financed by QuantBioRes-QBR A/S. Work on testing of peptides was supported by Public Health Services Grants DE030411 and DE025852 from NIDCR (to HMF) and DE029825 (to AM). The funder NIDCR had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Escherichia Coli
                Research and Analysis Methods
                Model Organisms
                Escherichia Coli
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Escherichia Coli
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Escherichia Coli
                Biology and Life Sciences
                Organisms
                Bacteria
                Enterobacteriaceae
                Escherichia
                Escherichia Coli
                Biology and Life Sciences
                Organisms
                Bacteria
                Gut Bacteria
                Escherichia
                Escherichia Coli
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Prokaryotic Models
                Escherichia Coli
                Biology and Life Sciences
                Microbiology
                Microbial Control
                Antimicrobial Resistance
                Antibiotic Resistance
                Medicine and Health Sciences
                Pharmacology
                Antimicrobial Resistance
                Antibiotic Resistance
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzyme Inhibitors
                Medicine and Health Sciences
                Pharmacology
                Drugs
                Antimicrobials
                Antibiotics
                Biology and Life Sciences
                Microbiology
                Microbial Control
                Antimicrobials
                Antibiotics
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Pseudomonas Aeruginosa
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Pseudomonas Aeruginosa
                Biology and Life Sciences
                Organisms
                Bacteria
                Pseudomonas
                Pseudomonas Aeruginosa
                Biology and Life Sciences
                Microbiology
                Microbial Control
                Antimicrobial Resistance
                Medicine and Health Sciences
                Pharmacology
                Antimicrobial Resistance
                Physical Sciences
                Chemistry
                Polymer Chemistry
                Macromolecules
                Physical Sciences
                Chemistry
                Chemical Reactions
                Hydrolysis
                Custom metadata
                All data generated or analyzed during this study are included in the published article. The detailed sequences of peptides pep1-4 are not included in the article due to unresolved intellectual property challenges. The authors are willing to share the sequences in response to individual requests to Hansel Fletcher [ hfletcher@ 123456llu.edu ] and/or Ivan Loncarevic [ ivlon@ 123456ymail.com ].

                Uncategorized
                Uncategorized

                Comments

                Comment on this article