24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wood decay fungi: an analysis of worldwide research

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Wood decay fungi are the only forms of life capable of degrading wood to its initial constituents, greatly contributing to the soil ecosystem. This study summarizes the current research status and development characteristics of global wood decay fungi research, in order to better understand their role in soils.

          Methods

          A bibliometric analysis was applied to the literature from 1913 to 2020, based on data from the Web of Science (WOS) Core Collection. For this, various bibliometric analysis methods, R (Biblioshiny package), and VOSviewer were applied.

          Results

          A total of 8089 documents in this field were identified in the WOS Core Collection. The annual number of publications tended to increase, with exponential growth after 2008. Researchers in this field were mainly concentrated in North Europe, the USA, and China. Biotechnology, applied microbiology, environmental sciences, and microbiology were the most popular WOS categories. Bioresource Technology and Applied Environmental Microbiology were the top two journals with the most citations. The top three authors with the most published papers were Dai YC, Martinez AT, and Cui BK. Co-occurrence analysis of author keywords identified six clusters, mainly divided into three categories: the classification and diversity, the degradation mechanisms, and the ecological functions of wood decay fungi. Clustering results further showed that the lignin degradation process and the application of wood decay fungi in industrial production and soil contamination remediation are current research hotspots.

          Conclusions

          We present a comprehensive and systematic overview of research related to wood decay fungi and provide a deep perspective to understand the associated research progress. This is important for facilitating the development of a profound understanding of the contribution of wood decay fungi to soil systems and the degradation of soil contaminants.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Software survey: VOSviewer, a computer program for bibliometric mapping

          We present VOSviewer, a freely available computer program that we have developed for constructing and viewing bibliometric maps. Unlike most computer programs that are used for bibliometric mapping, VOSviewer pays special attention to the graphical representation of bibliometric maps. The functionality of VOSviewer is especially useful for displaying large bibliometric maps in an easy-to-interpret way. The paper consists of three parts. In the first part, an overview of VOSviewer’s functionality for displaying bibliometric maps is provided. In the second part, the technical implementation of specific parts of the program is discussed. Finally, in the third part, VOSviewer’s ability to handle large maps is demonstrated by using the program to construct and display a co-citation map of 5,000 major scientific journals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Science Mapping: A Systematic Review of the Literature

            We present a systematic review of the literature concerning major aspects of science mapping to serve two primary purposes: First, to demonstrate the use of a science mapping approach to perform the review so that researchers may apply the procedure to the review of a scientific domain of their own interest, and second, to identify major areas of research activities concerning science mapping, intellectual milestones in the development of key specialties, evolutionary stages of major specialties involved, and the dynamics of transitions from one specialty to another. We first introduce a theoretical framework of the evolution of a scientific specialty. Then we demonstrate a generic search strategy that can be used to construct a representative dataset of bibliographic records of a domain of research. Next, progressively synthesized co-citation networks are constructed and visualized to aid visual analytic studies of the domain’s structural and dynamic patterns and trends. Finally, trajectories of citations made by particular types of authors and articles are presented to illustrate the predictive potential of the analytic approach. The evolution of the science mapping research involves the development of a number of interrelated specialties. Four major specialties are discussed in detail in terms of four evolutionary stages: conceptualization, tool construction, application, and codification. Underlying connections between major specialties are also explored. The predictive analysis demonstrates citations trajectories of potentially transformative contributions. The systematic review is primarily guided by citation patterns in the dataset retrieved from the literature. The scope of the data is limited by the source of the retrieval, i.e. the Web of Science, and the composite query used. An iterative query refinement is possible if one would like to improve the data quality, although the current approach serves our purpose adequately. More in-depth analyses of each specialty would be more revealing by incorporating additional methods such as citation context analysis and studies of other aspects of scholarly publications. The underlying analytic process of science mapping serves many practical needs, notably bibliometric mapping, knowledge domain visualization, and visualization of scientific literature. In order to master such a complex process of science mapping, researchers often need to develop a diverse set of skills and knowledge that may span multiple disciplines. The approach demonstrated in this article provides a generic method for conducting a systematic review. Incorporating the evolutionary stages of a specialty into the visual analytic study of a research domain is innovative. It provides a systematic methodology for researchers to achieve a good understanding of how scientific fields evolve, to recognize potentially insightful patterns from visually encoded signs, and to synthesize various information so as to capture the state of the art of the domain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathways for degradation of lignin in bacteria and fungi.

              Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.
                Bookmark

                Author and article information

                Journal
                Journal of Soils and Sediments
                J Soils Sediments
                Springer Science and Business Media LLC
                1439-0108
                1614-7480
                June 2022
                May 05 2022
                June 2022
                : 22
                : 6
                : 1688-1702
                Article
                10.1007/s11368-022-03225-9
                8fd40765-b4c9-4522-b87a-723f5064ddb3
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article