12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lights on Endocannabinoid-Mediated Synaptic Potentiation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endocannabinoid (eCB) system is a lipid-based neurotransmitter complex that plays crucial roles in the neural control of learning and memory. The current model of eCB-mediated retrograde signaling is that eCBs released from postsynaptic elements travel retrogradely to presynaptic axon terminals, where they activate cannabinoid type-1 receptors (CB 1Rs) and ultimately decrease neurotransmitter release on a short- or long-term scale. An increasing body of evidence has enlarged this view and shows that eCBs, besides depressing synaptic transmission, are also able to increase neurotransmitter release at multiple synapses of the brain. This indicates that eCBs act as bidirectional regulators of synaptic transmission and plasticity. Recently, studies unveiled links between the expression of eCB-mediated long-term potentiation (eCB-LTP) and learning, and between its dysregulation and several pathologies. In this review article, we first distinguish the various forms of eCB-LTP based on their mechanisms, resulting from homosynaptically or heterosynaptically-mediated processes. Next, we consider the neuromodulation of eCB-LTP, its behavioral impact on learning and memory, and finally, eCB-LTP disruptions in various pathologies and its potential as a therapeutic target in disorders such as stress coping, addiction, Alzheimer’s and Parkinson’s disease, and pain. Cannabis is gaining popularity as a recreational substance as well as a medicine, and multiple eCB-based drugs are under development. In this context, it is critical to understand eCB-mediated signaling in its multi-faceted complexity. Indeed, the bidirectional nature of eCB-based neuromodulation may offer an important key to interpret the functions of the eCB system and how it is impacted by cannabis and other drugs.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Endocannabinoid signaling and synaptic function.

          Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a nonretrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. In this Review, we focus on new advances in synaptic endocannabinoid signaling in the mammalian brain. The emerging picture not only reinforces endocannabinoids as potent regulators of synaptic function but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The endocannabinoid system and the brain.

            The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research--with an emphasis on recent publications--on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic--lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurobiological Interactions Between Stress and the Endocannabinoid System.

              Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                28 July 2020
                2020
                : 13
                : 132
                Affiliations
                [1] 1Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR7241, Labex Memolife , Paris, France
                [2] 2Department of Neurobiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
                Author notes

                Edited by: Sachin Patel, Vanderbilt University Medical Center, United States

                Reviewed by: Samir Haj-Dahmane, University at Buffalo, United States; David M. Lovinger, National Institute on Alcohol Abuse and Alcoholism (NIAAA), United States; Thomas J. Younts, University College London, United Kingdom

                *Correspondence: Laurent Venance laurent.venance@ 123456college-de-france.fr
                Article
                10.3389/fnmol.2020.00132
                7399367
                32848597
                8fab34c4-7c19-456c-a376-a72f0ea9ebac
                Copyright © 2020 Piette, Cui, Gervasi and Venance.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 May 2020
                : 26 June 2020
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 101, Pages: 10, Words: 7491
                Funding
                Funded by: Agence Nationale de la Recherche 10.13039/501100001665
                Categories
                Neuroscience
                Mini Review

                Neurosciences
                endocannabinoids,synaptic plasticity,long-term potentiation,neuromodulation,gabaergic interneurons,cannabinoid receptor type-1,learning and memory,excitation-inhibition balance

                Comments

                Comment on this article