Bioactive gibberellins (GAs) are diterpene plant hormones that are biosynthesized through complex pathways and control diverse aspects of growth and development. Biochemical, genetic, and genomic approaches have led to the identification of the majority of the genes that encode GA biosynthesis and deactivation enzymes. Recent studies have highlighted the occurrence of previously unrecognized deactivation mechanisms. It is now clear that both GA biosynthesis and deactivation pathways are tightly regulated by developmental, hormonal, and environmental signals, consistent with the role of GAs as key growth regulators. In some cases, the molecular mechanisms for fine-tuning the hormone levels are beginning to be uncovered. In this review, I summarize our current understanding of the GA biosynthesis and deactivation pathways in plants and fungi, and discuss how GA concentrations in plant tissues are regulated during development and in response to environmental stimuli.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.