0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In Search of the Most Stable Molecular Configuration of Heptakis(2,6- O-dimethyl)-β-cyclodextrin and Its Complex with Mianserin: A Comparison of the B3LYP-GD2 and M062X-GD3 Results

      research-article
      ,
      The Journal of Physical Chemistry. B
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cyclodextrins are well known for their ability to form stable, highly soluble complexes with various substances, which makes them widely used as excipients in food, cosmetics, and pharmaceuticals. In this work, properties of heptakis(2,6- O-dimethyl)-β-cyclodextrin (DM-β-CD) in vacuo and in water, as well as its ability to bind the antidepressant drug mianserin (MIA) in aqueous solution, are investigated computationally. The results are shown to depend strongly on the density functional theory (DFT) applied. The most stable conformers of DM-β-CD found with the B3LYP-GD2 method differ from these indicated by M062X-GD3 and other functionals. According to the latter, two crystal structures, ZULQAY and BOYFOK03, optimized in vacuo and in water, respectively, have the lowest energy. Both the B3LYP-GD2 and M062X-GD3 results show that all tested inclusion and noninclusion complexes of MIA:DM-β-CD in stoichiometry 1:1 are stable in water. However, the structures and their energetic properties obtained with each method differ: in the most stable configurations, different aromatic rings of MIA are embedded inside DM-β-CD, and the corresponding complexation energies (calculated with the 6-31++G(d,p) basis set and corrected for the basis set superposition error) are −29.6 (B3LYP-GD2) and −23.9 (M062X-GD3) kcal/mol. The NMR spectra of DM-β-CD and MIA:DM-β-CD are also compared.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.

          The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Density-functional thermochemistry. III. The role of exact exchange

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Semiempirical GGA-type density functional constructed with a long-range dispersion correction.

              A new density functional (DF) of the generalized gradient approximation (GGA) type for general chemistry applications termed B97-D is proposed. It is based on Becke's power-series ansatz from 1997 and is explicitly parameterized by including damped atom-pairwise dispersion corrections of the form C(6) x R(-6). A general computational scheme for the parameters used in this correction has been established and parameters for elements up to xenon and a scaling factor for the dispersion part for several common density functionals (BLYP, PBE, TPSS, B3LYP) are reported. The new functional is tested in comparison with other GGAs and the B3LYP hybrid functional on standard thermochemical benchmark sets, for 40 noncovalently bound complexes, including large stacked aromatic molecules and group II element clusters, and for the computation of molecular geometries. Further cross-validation tests were performed for organometallic reactions and other difficult problems for standard functionals. In summary, it is found that B97-D belongs to one of the most accurate general purpose GGAs, reaching, for example for the G97/2 set of heat of formations, a mean absolute deviation of only 3.8 kcal mol(-1). The performance for noncovalently bound systems including many pure van der Waals complexes is exceptionally good, reaching on the average CCSD(T) accuracy. The basic strategy in the development to restrict the density functional description to shorter electron correlation lengths scales and to describe situations with medium to large interatomic distances by damped C(6) x R(-6) terms seems to be very successful, as demonstrated for some notoriously difficult reactions. As an example, for the isomerization of larger branched to linear alkanes, B97-D is the only DF available that yields the right sign for the energy difference. From a practical point of view, the new functional seems to be quite robust and it is thus suggested as an efficient and accurate quantum chemical method for large systems where dispersion forces are of general importance. Copyright 2006 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                J Phys Chem B
                J Phys Chem B
                jp
                jpcbfk
                The Journal of Physical Chemistry. B
                American Chemical Society
                1520-6106
                1520-5207
                24 November 2021
                09 December 2021
                : 125
                : 48
                : 13077-13087
                Affiliations
                [1]Theoretical and Structural Chemistry Group, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz , Pomorska 163/165, 90-236 Lodz, Poland
                Author notes
                [* ]Email: anna.ignaczak@ 123456chemia.uni.lodz.pl . Phone: +(48) 42 635 57 91.
                Author information
                https://orcid.org/0000-0002-3872-2426
                Article
                10.1021/acs.jpcb.1c06831
                8667041
                34817179
                8f4f1853-3c05-4205-ae35-6fb308fc6d98
                © 2021 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 02 August 2021
                : 24 October 2021
                Categories
                Article
                Custom metadata
                jp1c06831
                jp1c06831

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article