12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ferroptosis: The Entanglement between Traditional Drugs and Nanodrugs in Tumor Therapy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ferroptosis is a non‐apoptotic programmed cell death caused by the accumulation of lipid peroxide. System Xc‐/glutathione peroxidase 4 (GPX4) axis and iron axis are two main pathways regulating ferroptosis. Simultaneously, multiple pathways are also involved in the ferroptosis regulation. Ferroptosis is an intense area of the current study. With the improvement of the regulatory mechanisms that underlie ferroptosis, a variety of drugs associated with ferroptosis have been discovered and developed for cancer therapy. Among them, traditional drugs were developed initially. Small molecule compounds that regulate ferroptosis signaling pathway and iron complexes that promote the Fenton reaction have become important drugs for inducing ferroptosis. In recent years, the emerging development of nanotechnology has promoted the research of ferroptosis nanodrugs. Iron‐based nanomaterials are extensively tested as ferroptosis‐inducing agents. Furthermore, nanoscale drug delivery systems offer a suitable scaffold for traditional drug therapies. Traditional drugs and nanodrugs are complementary, each with their own strengths and limitations. This review describes the latest studies on the regulation of ferroptosis in tumor cells and focuses on the entanglement between traditional drugs and nanodrugs. To conclude, the challenges and perspectives in this field are put forward.

          Related collections

          Most cited references188

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease

            Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferroptosis: mechanisms, biology and role in disease

              The research field of ferroptosis has seen exponential growth over the past few years, since the term was coined in 2012. This unique modality of cell death, driven by iron-dependent phospholipid peroxidation, is regulated by multiple cellular metabolic pathways, including redox homeostasis, iron handling, mitochondrial activity and metabolism of amino acids, lipids and sugars, in addition to various signalling pathways relevant to disease. Numerous organ injuries and degenerative pathologies are driven by ferroptosis. Intriguingly, therapy-resistant cancer cells, particularly those in the mesenchymal state and prone to metastasis, are exquisitely vulnerable to ferroptosis. As such, pharmacological modulation of ferroptosis, via both its induction and its inhibition, holds great potential for the treatment of drug-resistant cancers, ischaemic organ injuries and other degenerative diseases linked to extensive lipid peroxidation. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of ferroptosis, the potential physiological functions of ferroptosis in tumour suppression and immune surveillance, and its pathological roles, together with a potential for therapeutic targeting. Importantly, as in all rapidly evolving research areas, challenges exist due to misconceptions and inappropriate experimental methods. This Review also aims to address these issues and to provide practical guidelines for enhancing reproducibility and reliability in studies of ferroptosis. Finally, we discuss important concepts and pressing questions that should be the focus of future ferroptosis research.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Healthcare Materials
                Adv Healthcare Materials
                Wiley
                2192-2640
                2192-2659
                May 2023
                February 03 2023
                May 2023
                : 12
                : 12
                Affiliations
                [1 ] Jilin Provincial Key Laboratory of Oral Biomedical Engineering School and Hospital of Stomatology Jilin University Changchun 130021 P. R. China
                Article
                10.1002/adhm.202203085
                36657166
                8f37edb0-2956-424c-8490-15d05d599b4b
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article