Ferroelectrics allow for a wide range of intriguing applications. However, maintaining ferroelectricity has been hampered by intrinsic depolarization effects. Here, by combining first-principles calculations and experimental studies, we report on the discovery of robust room-temperature out-of-plane ferroelectricity which is realized in the thinnest monolayer MoTe 2 with unexploited distorted 1T ( d1T) phase. The origin of the ferroelectricity in d1T-MoTe 2 results from the spontaneous symmetry breaking due to the relative atomic displacements of Mo atoms and Te atoms. Furthermore, a large ON/OFF resistance ratio is achieved in ferroelectric devices composed of MoTe 2-based van der Waals heterostructure. Our work demonstrates that ferroelectricity can exist in two-dimensional layered material down to the atomic monolayer limit, which can result in new functionalities and achieve unexpected applications in atomic-scale electronic devices.
It is difficult to maintain ferroelectricity in the two dimensional limit. Here, the authors report robust room-temperature ferroelectricity in the thinnest monolayer MoTe 2 due to relative atomic displacements of Mo and Te atoms.