66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerosis is an inflammatory vascular disease responsible for the first cause of mortality worldwide. Recent studies have clearly highlighted the critical role of the immunoinflammatory balance in the modulation of disease development and progression. However, the immunoregulatory pathways that control atherosclerosis remain largely unknown. We show that loss of suppressor of cytokine signaling (SOCS) 3 in T cells increases both interleukin (IL)-17 and IL-10 production, induces an antiinflammatory macrophage phenotype, and leads to unexpected IL-17–dependent reduction in lesion development and vascular inflammation. In vivo administration of IL-17 reduces endothelial vascular cell adhesion molecule–1 expression and vascular T cell infiltration, and significantly limits atherosclerotic lesion development. In contrast, overexpression of SOCS3 in T cells reduces IL-17 and accelerates atherosclerosis. We also show that in human lesions, increased levels of signal transducer and activator of transcription (STAT) 3 phosphorylation and IL-17 are associated with a stable plaque phenotype. These results identify novel SOCS3-controlled IL-17 regulatory pathways in atherosclerosis and may have important implications for the understanding of the increased susceptibility to vascular inflammation in patients with dominant-negative STAT3 mutations and defective Th17 cell differentiation.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Cytokines in atherosclerosis: pathogenic and regulatory pathways.

          Atherosclerosis is a chronic disease of the arterial wall where both innate and adaptive immunoinflammatory mechanisms are involved. Inflammation is central at all stages of atherosclerosis. It is implicated in the formation of early fatty streaks, when the endothelium is activated and expresses chemokines and adhesion molecules leading to monocyte/lymphocyte recruitment and infiltration into the subendothelium. It also acts at the onset of adverse clinical vascular events, when activated cells within the plaque secrete matrix proteases that degrade extracellular matrix proteins and weaken the fibrous cap, leading to rupture and thrombus formation. Cells involved in the atherosclerotic process secrete and are activated by soluble factors, known as cytokines. Important recent advances in the comprehension of the mechanisms of atherosclerosis provided evidence that the immunoinflammatory response in atherosclerosis is modulated by regulatory pathways, in which the two anti-inflammatory cytokines interleukin-10 and transforming growth factor-beta play a critical role. The purpose of this review is to bring together the current information concerning the role of cytokines in the development, progression, and complications of atherosclerosis. Specific emphasis is placed on the contribution of pro- and anti-inflammatory cytokines to pathogenic (innate and adaptive) and regulatory immunity in the context of atherosclerosis. Based on our current knowledge of the role of cytokines in atherosclerosis, we propose some novel therapeutic strategies to combat this disease. In addition, we discuss the potential of circulating cytokine levels as biomarkers of coronary artery disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            T(H)-17 cells in the circle of immunity and autoimmunity.

            CD4(+) effector T cells have been categorized into two subsets: T helper type 1 (T(H)1) and T(H)2. Another subset of T cells that produce interleukin 17 (IL-17; 'T(H)-17 cells') has been identified that is highly proinflammatory and induces severe autoimmunity. Whereas IL-23 serves to expand previously differentiated T(H)-17 cell populations, IL-6 and transforming growth factor-beta (TGF-beta) induce the differentiation of T(H)-17 cells from naive precursors. These data suggest a dichotomy between CD4(+) regulatory T cells positive for the transcription factor Foxp3 and T(H)-17 cells: TGF-beta induces Foxp3 and generates induced regulatory T cells, whereas IL-6 inhibits TGF-beta-driven Foxp3 expression and together with TGF-beta induces T(H)-17 cells. Emerging data regarding T(H)-17 cells suggest a very important function for this T cell subset in immunity and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells.

              Although tumor progression involves processes such as tissue invasion that can activate inflammatory responses, the immune system largely ignores or tolerates disseminated cancers. The mechanisms that block initiation of immune responses during cancer development are poorly understood. We report here that constitutive activation of Stat-3, a common oncogenic signaling pathway, suppresses tumor expression of proinflammatory mediators. Blocking Stat-3 in tumor cells increases expression of proinflammatory cytokines and chemokines that activate innate immunity and dendritic cells, leading to tumor-specific T-cell responses. In addition, constitutive Stat-3 activity induces production of pleiotropic factors that inhibit dendritic cell functional maturation. Tumor-derived factors inhibit dendritic cell maturation through Stat-3 activation in progenitor cells. Thus, inhibition of antitumor immunity involves a cascade of Stat-3 activation propagating from tumor to dendritic cells. We propose that tumor Stat-3 activity can mediate immune evasion by blocking both the production and sensing of inflammatory signals by multiple components of the immune system.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                28 September 2009
                : 206
                : 10
                : 2067-2077
                Affiliations
                [1 ]Institut National de la Santé et de la Recherche Médicale, Unit 970 and Université Paris Descartes, Paris Cardiovascular Research Center, 75015 Paris, France
                [2 ]Ludwig Institute for Cancer Research and [3 ]Cellular Genetics Unit, Université de Louvain, 1200 Brussels, Belgium
                [4 ]University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
                [5 ]Department of Internal Medicine, Division of Cardiovascular Medicine, Kurume University, Kurume City 830-0011, Japan
                [6 ]Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
                [7 ]Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo 102-0075, Japan
                Author notes
                CORRESPONDENCE Ziad Mallat: ziad.mallat@ 123456inserm.fr
                Article
                20090545
                10.1084/jem.20090545
                2757872
                19737863
                8f2bdad5-9e0d-4e3e-bbde-e7bff9ae5bdc
                © 2009 Taleb et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 10 March 2009
                : 12 August 2009
                Categories
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article