5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic prediction for complex traits across multiples harvests in alfalfa ( Medicago sativa L.) is enhanced by enviromics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breeding for dry matter yield and persistence in alfalfa ( Medicago sativa L.) can take several years as these traits must be evaluated under multiple harvests. Therefore, genotype‐by‐harvest interaction should be incorporated into genomic prediction models to explore genotypes’ adaptability and stability. In this study, we investigated how enviromics could help to predict the genotypic performance under multiharvest alfalfa breeding trials by evaluating 177 families across 11 harvests under four cross‐validation scenarios. All scenarios were analyzed using six models in a Bayesian mixed model framework. Our results demonstrate that models accounting to the enviromics information led to an increase of genetic variance and a decrease in the error variance, indicating better biological explanation when the enviromic information was incorporated. Furthermore, models that accounted for enviromic data led to higher predictive ability (PA) in a reduced number of harvests used in the training data set. The best enviromic models (M2 and M3) outperformed the base model (GBLUP model—M0) for predicting adaptability and persistence across all cross‐validation scenarios. Incorporating environmental covariates also provided higher PA for persistence compared with the base model, as predictions increased from 0 to 0.16, 0.20, 0.56, and 0.46 for CV00, CV1, CV0, and CV2. The results also demonstrate that GBLUP without enviromics term has low power to predict persistence, thus the adoption of enviromics is a cheap and efficient alternative to increase accuracy and biological meaning.

          Core ideas

          • Enviromics can increase the predictive ability for genotypic performance across harvests.

          • The use of enviromic information can reduce the number of harvests needed to train genomic prediction models.

          • Models including enviromic data outperformed the base model for predicting adaptability across all scenarios.

          • GBLUP models without incorporating enviromics had low power to predict persistence.

          • Accounting for G×E by inclusion of multiharvest data increased the predictive ability for most traits.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fast and accurate short read alignment with Burrows–Wheeler transform

          Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The variant call format and VCFtools

            Summary: The variant call format (VCF) is a generic format for storing DNA polymorphism data such as SNPs, insertions, deletions and structural variants, together with rich annotations. VCF is usually stored in a compressed manner and can be indexed for fast data retrieval of variants from a range of positions on the reference genome. The format was developed for the 1000 Genomes Project, and has also been adopted by other projects such as UK10K, dbSNP and the NHLBI Exome Project. VCFtools is a software suite that implements various utilities for processing VCF files, including validation, merging, comparing and also provides a general Perl API. Availability: http://vcftools.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps

              Recent advances in molecular genetic techniques will make dense marker maps available and genotyping many individuals for these markers feasible. Here we attempted to estimate the effects of ∼50,000 marker haplotypes simultaneously from a limited number of phenotypic records. A genome of 1000 cM was simulated with a marker spacing of 1 cM. The markers surrounding every 1-cM region were combined into marker haplotypes. Due to finite population size (Ne = 100), the marker haplotypes were in linkage disequilibrium with the QTL located between the markers. Using least squares, all haplotype effects could not be estimated simultaneously. When only the biggest effects were included, they were overestimated and the accuracy of predicting genetic values of the offspring of the recorded animals was only 0.32. Best linear unbiased prediction of haplotype effects assumed equal variances associated to each 1-cM chromosomal segment, which yielded an accuracy of 0.73, although this assumption was far from true. Bayesian methods that assumed a prior distribution of the variance associated with each chromosome segment increased this accuracy to 0.85, even when the prior was not correct. It was concluded that selection on genetic values predicted from markers could substantially increase the rate of genetic gain in animals and plants, especially if combined with reproductive techniques to shorten the generation interval.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Plant Genome
                The Plant Genome
                Wiley
                1940-3372
                1940-3372
                June 2023
                February 22 2023
                June 2023
                : 16
                : 2
                Affiliations
                [1 ] Departamento de Biologia, Instituto de Ciências Naturais Universidade Federal de Lavras Lavras Minas Gerais Brazil
                [2 ] Agronomy Department University of Florida Gainesville FL USA
                Article
                10.1002/tpg2.20306
                36815221
                8efcd634-6a5f-449f-9790-b3fc53fdd3a2
                © 2023

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article